IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v281y2014icp52-64.html
   My bibliography  Save this article

A first global and spatially explicit emergy database of rivers and streams based on high-resolution GIS-maps

Author

Listed:
  • Arbault, Damien
  • Rugani, Benedetto
  • Tiruta-Barna, Ligia
  • Benetto, Enrico

Abstract

In emergy evaluation (EME), water is often identified as the main renewable resource input of a natural or human system. Water flows in EME have been generally examined with a global perspective, i.e. without considering topographical and climatic differences at regional or local scales. Hence, spatial differentiation in water flows characterization is essential to improve the quality of EME results. This paper introduces the first global, spatially explicit emergy dataset of freshwater flows, developed following the rationale found in prior EMEs of rivers. The unit emergy value (UEV) of a stream was calculated as the highest value between rain chemical potential emergy and rain geopotential emergy over the stream's catchment area, divided by the stream flow rate. This approach was applied with a high resolution and a global coverage, using Geographic Information System (GIS) software and, notably, world maps of precipitation, evapotranspiration and elevation, to estimate accumulation patterns of rainfall emergy value and flow rates. Preliminary results are compared with available data on river's UEVs retrieved from previous studies and with the actual stream flow of major rivers in the world and in France. While flow rates modeled in the database show important differences as compared to actual data, the comparison of the modeled emergy value of rivers with prior studies was made difficult by the heterogeneity in calculation details observed previously. Therefore, it is highly recommended for the emergy community to foster the use and improvement of such high-resolution, spatially explicit dataset instead of using regional or global UEV averages, which should only be used when reliable local values are not available. Hence, territorial averages were computed in order to characterize background processes in the hybrid lifecycle-emergy accounting framework, as this approach can complement and enrich the conventional EME with the inclusion of detailed information on supply chain processes. To this aim, data were aggregated over major watersheds and administrative regions, and weighted with a proxy for urban surface water consumption. The next steps identified to enhance our prospective work include: (1) the characterization of water reservoirs (glaciers, lakes, groundwater, soil moisture), (2) the improvement of runoff modeling and stream flows, (3) the spatial assessment of atmospheric processes to refine transformities of rain (chemical potential and geopotential), and (4) the inclusion of additional elements such as sediments, minerals and particulate matter as a flow of emergy in rivers.

Suggested Citation

  • Arbault, Damien & Rugani, Benedetto & Tiruta-Barna, Ligia & Benetto, Enrico, 2014. "A first global and spatially explicit emergy database of rivers and streams based on high-resolution GIS-maps," Ecological Modelling, Elsevier, vol. 281(C), pages 52-64.
  • Handle: RePEc:eee:ecomod:v:281:y:2014:i:c:p:52-64
    DOI: 10.1016/j.ecolmodel.2014.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014001288
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agostinho, Feni & Ambrósio, Luís Alberto & Ortega, Enrique, 2010. "Assessment of a large watershed in Brazil using Emergy Evaluation and Geographical Information System," Ecological Modelling, Elsevier, vol. 221(8), pages 1209-1220.
    2. Brown, Mark T. & Martínez, Amaya & Uche, Javier, 2010. "Emergy analysis applied to the estimation of the recovery of costs for water services under the European Water Framework Directive," Ecological Modelling, Elsevier, vol. 221(17), pages 2123-2132.
    3. Mellino, Salvatore & Ripa, Maddalena & Zucaro, Amalia & Ulgiati, Sergio, 2014. "An emergy–GIS approach to the evaluation of renewable resource flows: A case study of Campania Region, Italy," Ecological Modelling, Elsevier, vol. 271(C), pages 103-112.
    4. Martínez, Amaya & Uche, Javier, 2010. "Chemical exergy assessment of organic matter in a water flow," Energy, Elsevier, vol. 35(1), pages 77-84.
    5. Pulselli, Federico M. & Patrizi, Nicoletta & Focardi, Silvia, 2011. "Calculation of the unit emergy value of water in an Italian watershed," Ecological Modelling, Elsevier, vol. 222(16), pages 2929-2938.
    6. Lenzen, Manfred & Moran, Daniel & Bhaduri, Anik & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2013. "International trade of scarce water," Ecological Economics, Elsevier, vol. 94(C), pages 78-85.
    7. Giannetti, B.F. & Demétrio, J.F.C. & Bonilla, S.H. & Agostinho, F. & Almeida, C.M.V.B., 2013. "Emergy diagnosis and reflections towards Brazilian sustainable development," Energy Policy, Elsevier, vol. 63(C), pages 1002-1012.
    8. Marvuglia, Antonino & Benetto, Enrico & Rios, Gordon & Rugani, Benedetto, 2013. "SCALE: Software for CALculating Emergy based on life cycle inventories," Ecological Modelling, Elsevier, vol. 248(C), pages 80-91.
    9. Brown, M. T. & Herendeen, R. A., 1996. "Embodied energy analysis and EMERGY analysis: a comparative view," Ecological Economics, Elsevier, vol. 19(3), pages 219-235, December.
    10. Brown, Mark T. & Ulgiati, Sergio, 2010. "Updated evaluation of exergy and emergy driving the geobiosphere: A review and refinement of the emergy baseline," Ecological Modelling, Elsevier, vol. 221(20), pages 2501-2508.
    11. Huang, Shu-Li & Budd, William W. & Chan, Shih-Liang & Lin, Ying-Chen, 2007. "Stream order, hierarchy, and energy convergence of land use," Ecological Modelling, Elsevier, vol. 205(1), pages 255-264.
    12. Watanabe, Marcos D.B. & Ortega, Enrique, 2014. "Dynamic emergy accounting of water and carbon ecosystem services: A model to simulate the impacts of land-use change," Ecological Modelling, Elsevier, vol. 271(C), pages 113-131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xueqi & Liu, Gengyuan & Coscieme, Luca & Giannetti, Biagio F. & Hao, Yan & Zhang, Yan & Brown, Mark T., 2019. "Study on the emergy-based thermodynamic geography of the Jing-Jin-Ji region: Combined multivariate statistical data with DMSP-OLS nighttime lights data," Ecological Modelling, Elsevier, vol. 397(C), pages 1-15.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyu, Yanfeng & Raugei, Marco & Zhang, Xiaohong & Mellino, Salvatore & Ulgiati, Sergio, 2021. "Environmental cost and impacts of chemicals used in agriculture: An integration of emergy and Life Cycle Assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Agostinho, F. & Oliveira, M.W. & Pulselli, F.M. & Almeida, C.M.V.B. & Giannetti, B.F., 2019. "Emergy accounting as a support for a strategic planning towards a regional sustainable milk production," Agricultural Systems, Elsevier, vol. 176(C).
    3. Liu, Xinyu & Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Ulgiati, Sergio, 2016. "Comparing national environmental and economic performances through emergy sustainability indicators: Moving environmental ethics beyond anthropocentrism toward ecocentrism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1532-1542.
    4. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    5. Qingsong Wang & Hongkun Xiao & Qiao Ma & Xueliang Yuan & Jian Zuo & Jian Zhang & Shuguang Wang & Mansen Wang, 2020. "Review of Emergy Analysis and Life Cycle Assessment: Coupling Development Perspective," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
    6. De La Fuente, G. & Asnaghi, V. & Chiantore, M. & Thrush, S. & Povero, P. & Vassallo, P. & Petrillo, M. & Paoli, C., 2019. "The effect of Cystoseira canopy on the value of midlittoral habitats in NW Mediterranean, an emergy assessment," Ecological Modelling, Elsevier, vol. 404(C), pages 1-11.
    7. Gustavo Bustamante & Biagio Fernando Giannetti & Feni Agostinho & Gengyuan Liu & Cecília M. V. B. Almeida, 2022. "Prioritizing Cleaner Production Actions towards Circularity: Combining LCA and Emergy in the PET Production Chain," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    8. Keena, Naomi & Raugei, Marco & Aly Etman, Mohamed & Ruan, Daniel & Dyson, Anna, 2018. "Clark’s Crow: A design plugin to support emergy analysis decision making towards sustainable urban ecologies," Ecological Modelling, Elsevier, vol. 367(C), pages 42-57.
    9. Gala, Alba Bala & Raugei, Marco & Ripa, Maddalena & Ulgiati, Sergio, 2015. "Dealing with waste products and flows in life cycle assessment and emergy accounting: Methodological overview and synergies," Ecological Modelling, Elsevier, vol. 315(C), pages 69-76.
    10. Agostinho, Feni & Almeida, Cecília M.V.B. & Bonilla, Silvia H. & Sacomano, José B. & Giannetti, Biagio F., 2013. "Urban solid waste plant treatment in Brazil: Is there a net emergy yield on the recovered materials?," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 143-155.
    11. Paolo Vassallo & Claudia Turcato & Ilaria Rigo & Claudia Scopesi & Andrea Costa & Matteo Barcella & Giulia Dapueto & Mauro Mariotti & Chiara Paoli, 2021. "Biophysical Accounting of Forests’ Value under Different Management Regimes: Conservation vs. Exploitation," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    12. Wang, Saige & Cao, Tao & Chen, Bin, 2017. "Urban energy–water nexus based on modified input–output analysis," Applied Energy, Elsevier, vol. 196(C), pages 208-217.
    13. Hengyu Pan & Yong Geng & Ji Han & Cheng Huang & Wenyi Han & Zhuang Miao, 2020. "Emergy Based Decoupling Analysis of Ecosystem Services on Urbanization: A Case of Shanghai, China," Energies, MDPI, vol. 13(22), pages 1-25, November.
    14. Xin (Cissy) Ma & Xiaobo Xue & Alejandra González-Mejía & Jay Garland & Jennifer Cashdollar, 2015. "Sustainable Water Systems for the City of Tomorrow—A Conceptual Framework," Sustainability, MDPI, vol. 7(9), pages 1-35, September.
    15. Xiumei Xu & Chao Feng & Yongshan Du & Qimeng Wang & Gaige Zhang & Yicheng Huang, 2022. "Evaluating the sustainability of a tourism system based on emergy accounting and emergetic ternary diagrams: a case study of the Xinjiang Kanas tourism area," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6731-6787, May.
    16. Geng, Yong & Tian, Xu & Sarkis, Joseph & Ulgiati, Sergio, 2017. "China-USA Trade: Indicators for Equitable and Environmentally Balanced Resource Exchange," Ecological Economics, Elsevier, vol. 132(C), pages 245-254.
    17. Lyu, Yanfeng & Yang, Xiangdong & Ma, Xiaohan & Pan, Hengyu & Zhang, Xiaohong, 2023. "Promoting coordinated development of the fertilizer production-crop plantation combined system through an integrated approach," Ecological Modelling, Elsevier, vol. 478(C).
    18. Le Corre, O. & Truffet, L., 2015. "Emergy paths computation from interconnected energy system diagram," Ecological Modelling, Elsevier, vol. 313(C), pages 181-200.
    19. Jiang, M.M. & Chen, B., 2011. "Integrated urban ecosystem evaluation and modeling based on embodied cosmic exergy," Ecological Modelling, Elsevier, vol. 222(13), pages 2149-2165.
    20. Yu Zhao & Miao Yu & Yinghui Xiang & Chunguang Chang, 2023. "An approach to stimulate the sustainability of an eco-industrial park using coupled emergy and system dynamics," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11531-11556, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:281:y:2014:i:c:p:52-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.