IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v291y2014icp82-95.html
   My bibliography  Save this article

Modelling ecosystem structure and trophic interactions in a typical cyanobacterial bloom-dominated shallow Lake Dianchi, China

Author

Listed:
  • Shan, Kun
  • Li, Lin
  • Wang, Xiaoxiao
  • Wu, Yanlong
  • Hu, Lili
  • Yu, Gongliang
  • Song, Lirong

Abstract

Lake Dianchi is the largest shallow lake in Yunnan-Guizhou plateau and the sixth largest one in China. The lake has been experiencing cyanobacterial blooms in the last two decades. Although a few studies have investigated the tempo-spatial dynamics of cyanobacterial blooms and their underlying mechanisms, knowledge regarding the food web structure and trophic interactions in bloom-dominated ecosystems is scarce. In the present study, an Ecopath model was developed to assess the entire lake ecosystem on the basis of historical and survey data obtained between 2009 and 2010 at Lake Dianchi. The results showed that the aggregation of flows sensu Lindeman refers to six trophic levels (TLs), and most biomasses and trophic flows were primarily concentrated at the first three levels. About 77.5% of the trophic flows from TLI to TLII originated from detritus, whereas high proportions of under-utilised zooplankton biomass returned to the detritus because of low transfer efficiencies (2.9%) in TLII. The microbial loop was considered to be involved in linking the transfer between detritus and TLII. In addition, low values of connectance index and average mutual information implied that the food web tended to be lost in information diversity and had a less complicated structure. High cycling flows concentrated in the microbial loop reflected that the ecosystem enhanced recycling to forms positive feedback by which ecosystem locked the nutrients and promoted the inflation of biomass in plankton communities. Thus, Dianchi Lake was clearly thought to be a bottom-up control ecosystem. These characteristics of the food web partly explained why cyanobacterial blooms were exceptionally heavy and durable in this lake. Finally, the implications of artificially stocking filter-feeding fish (bighead and silver fish) and exotic zooplantivorous icefish on the ecosystem structure and function are discussed herein.

Suggested Citation

  • Shan, Kun & Li, Lin & Wang, Xiaoxiao & Wu, Yanlong & Hu, Lili & Yu, Gongliang & Song, Lirong, 2014. "Modelling ecosystem structure and trophic interactions in a typical cyanobacterial bloom-dominated shallow Lake Dianchi, China," Ecological Modelling, Elsevier, vol. 291(C), pages 82-95.
  • Handle: RePEc:eee:ecomod:v:291:y:2014:i:c:p:82-95
    DOI: 10.1016/j.ecolmodel.2014.07.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014003512
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.07.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fetahi, Tadesse & Schagerl, Michael & Mengistou, Seyoum & Libralato, Simone, 2011. "Food web structure and trophic interactions of the tropical highland lake Hayq, Ethiopia," Ecological Modelling, Elsevier, vol. 222(3), pages 804-813.
    2. Han, Jeong-Ho & Kumar, Hema K. & Lee, Jae Hoon & Zhang, Chang-Ik & Kim, Se-Wha & Lee, Jung-Ho & Kim, Sang Don & An, Kwang-Guk, 2011. "Integrative trophic network assessments of a lentic ecosystem by key ecological approaches of water chemistry, trophic guilds, and ecosystem health assessments along with an ECOPATH model," Ecological Modelling, Elsevier, vol. 222(19), pages 3457-3472.
    3. Fetahi, Tadesse & Mengistou, Seyoum, 2007. "Trophic analysis of Lake Awassa (Ethiopia) using mass-balance Ecopath model," Ecological Modelling, Elsevier, vol. 201(3), pages 398-408.
    4. Liu, Qi-Gen & Chen, Yong & Li, Jia-Le & Chen, Li-Qiao, 2007. "The food web structure and ecosystem properties of a filter-feeding carps dominated deep reservoir ecosystem," Ecological Modelling, Elsevier, vol. 203(3), pages 279-289.
    5. Darwall, William R.T. & Allison, Edward H. & Turner, George F. & Irvine, Kenneth, 2010. "Lake of flies, or lake of fish? A trophic model of Lake Malawi," Ecological Modelling, Elsevier, vol. 221(4), pages 713-727.
    6. Villanueva, Maria Concepcion S. & Isumbisho, Mwapu & Kaningini, Boniface & Moreau, Jacques & Micha, Jean-Claude, 2008. "Modeling trophic interactions in Lake Kivu: What roles do exotics play?," Ecological Modelling, Elsevier, vol. 212(3), pages 422-438.
    7. Guo, Chuanbo & Ye, Shaowen & Lek, Sovan & Liu, Jiashou & Zhang, Tanglin & Yuan, Jin & Li, Zhongjie, 2013. "The need for improved fishery management in a shallow macrophytic lake in the Yangtze River basin: Evidence from the food web structure and ecosystem analysis," Ecological Modelling, Elsevier, vol. 267(C), pages 138-147.
    8. Thapanand, Thanitha & Moreau, Jacques & Jutagate, Tuantong & Wongrat, Prachit & Lekchonlayut, Teera & Meksumpun, Charumas & Janekitkarn, Sommai & Rodloi, Arunee & Dulyapruk, Varunthat & Wongrat, Ladda, 2007. "Towards possible fishery management strategies in a newly impounded man-made lake in Thailand," Ecological Modelling, Elsevier, vol. 204(1), pages 143-155.
    9. Jia, Peiqiao & Hu, Menghong & Hu, Zhongjun & Liu, Qigen & Wu, Zhen, 2012. "Modeling trophic structure and energy flows in a typical macrophyte dominated shallow lake using the mass balanced model," Ecological Modelling, Elsevier, vol. 233(C), pages 26-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yuzhao & Liu, Yong & Zhao, Lei & Hastings, Alan & Guo, Huaicheng, 2015. "Exploring change of internal nutrients cycling in a shallow lake: A dynamic nutrient driven phytoplankton model," Ecological Modelling, Elsevier, vol. 313(C), pages 137-148.
    2. Wang, Shuran Cindy & Liu, Xueqin & Liu, Yong & Wang, Hongzhu, 2020. "Benthic-pelagic coupling in lake energetic food webs," Ecological Modelling, Elsevier, vol. 417(C).
    3. Kong, Xiangzhen & He, Wei & Liu, Wenxiu & Yang, Bin & Xu, Fuliu & Jørgensen, Sven Erik & Mooij, Wolf M., 2016. "Changes in food web structure and ecosystem functioning of a large, shallow Chinese lake during the 1950s, 1980s and 2000s," Ecological Modelling, Elsevier, vol. 319(C), pages 31-41.
    4. Wang, Yuyu & Kao, Yu-Chun & Zhou, Yangming & Zhang, Huan & Yu, Xiubo & Lei, Guangchun, 2019. "Can water level management, stock enhancement, and fishery restriction offset negative effects of hydrological changes on the four major Chinese carps in China’s largest freshwater lake?," Ecological Modelling, Elsevier, vol. 403(C), pages 1-10.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chea, Ratha & Guo, Chuanbo & Grenouillet, Gaël & Lek, Sovan, 2016. "Toward an ecological understanding of a flood-pulse system lake in a tropical ecosystem: Food web structure and ecosystem health," Ecological Modelling, Elsevier, vol. 323(C), pages 1-11.
    2. Tesfaye, Gashaw & Wolff, Matthias, 2018. "Modeling trophic interactions and the impact of an introduced exotic carp species in the Rift Valley Lake Koka, Ethiopia," Ecological Modelling, Elsevier, vol. 378(C), pages 26-36.
    3. Guo, Chuanbo & Ye, Shaowen & Lek, Sovan & Liu, Jiashou & Zhang, Tanglin & Yuan, Jin & Li, Zhongjie, 2013. "The need for improved fishery management in a shallow macrophytic lake in the Yangtze River basin: Evidence from the food web structure and ecosystem analysis," Ecological Modelling, Elsevier, vol. 267(C), pages 138-147.
    4. Kong, Xiangzhen & He, Wei & Liu, Wenxiu & Yang, Bin & Xu, Fuliu & Jørgensen, Sven Erik & Mooij, Wolf M., 2016. "Changes in food web structure and ecosystem functioning of a large, shallow Chinese lake during the 1950s, 1980s and 2000s," Ecological Modelling, Elsevier, vol. 319(C), pages 31-41.
    5. Natugonza, Vianny & Ogutu-Ohwayo, Richard & Musinguzi, Laban & Kashindye, Benedicto & Jónsson, Steingrímur & Valtysson, Hreidar Thor, 2016. "Exploring the structural and functional properties of the Lake Victoria food web, and the role of fisheries, using a mass balance model," Ecological Modelling, Elsevier, vol. 342(C), pages 161-174.
    6. Han, Jeong-Ho & Kumar, Hema K. & Lee, Jae Hoon & Zhang, Chang-Ik & Kim, Se-Wha & Lee, Jung-Ho & Kim, Sang Don & An, Kwang-Guk, 2011. "Integrative trophic network assessments of a lentic ecosystem by key ecological approaches of water chemistry, trophic guilds, and ecosystem health assessments along with an ECOPATH model," Ecological Modelling, Elsevier, vol. 222(19), pages 3457-3472.
    7. Ortiz, Marco & Berrios, Fernando & Campos, Leonardo & Uribe, Roberto & Ramirez, Alejandro & Hermosillo-Núñez, Brenda & González, Jorge & Rodriguez-Zaragoza, Fabián, 2015. "Mass balanced trophic models and short-term dynamical simulations for benthic ecological systems of Mejillones and Antofagasta bays (SE Pacific): Comparative network structure and assessment of human ," Ecological Modelling, Elsevier, vol. 309, pages 153-162.
    8. Hossain, Md. Monir & Matsuishi, Takashi & Arhonditsis, George, 2010. "Elucidation of ecosystem attributes of an oligotrophic lake in Hokkaido, Japan, using Ecopath with Ecosim (EwE)," Ecological Modelling, Elsevier, vol. 221(13), pages 1717-1730.
    9. Duan, L.J. & Li, S.Y. & Liu, Y. & Moreau, J. & Christensen, V., 2009. "Modeling changes in the coastal ecosystem of the Pearl River Estuary from 1981 to 1998," Ecological Modelling, Elsevier, vol. 220(20), pages 2802-2818.
    10. Prado, Patricia & Ibáñez, Carles & Caiola, Nuno & Reyes, Enrique, 2013. "Evaluation of seasonal variability in the food-web properties of coastal lagoons subjected to contrasting salinity gradients using network analyses," Ecological Modelling, Elsevier, vol. 265(C), pages 180-193.
    11. Wang, Sai & Wang, Lin & Chang, Hao-Yen & Li, Feng & Tang, Jin-Peng & Zhou, Xing-An & Li, Xing & Tian, Shi-Mi & Lin, Hsing-Juh & Yang, Yang, 2018. "Longitudinal variation in energy flow networks along a large subtropical river, China," Ecological Modelling, Elsevier, vol. 387(C), pages 83-95.
    12. Jia, Peiqiao & Hu, Menghong & Hu, Zhongjun & Liu, Qigen & Wu, Zhen, 2012. "Modeling trophic structure and energy flows in a typical macrophyte dominated shallow lake using the mass balanced model," Ecological Modelling, Elsevier, vol. 233(C), pages 26-30.
    13. Liping Zhang & Shiwen Zhang & Yajie Huang & Meng Cao & Yuanfang Huang & Hongyan Zhang, 2016. "Exploring an Ecologically Sustainable Scheme for Landscape Restoration of Abandoned Mine Land: Scenario-Based Simulation Integrated Linear Programming and CLUE-S Model," IJERPH, MDPI, vol. 13(4), pages 1-20, March.
    14. Gubiani, Éder A. & Angelini, Ronaldo & Vieira, Ludgero C.G. & Gomes, Luiz C. & Agostinho, Angelo A., 2011. "Trophic models in Neotropical reservoirs: Testing hypotheses on the relationship between aging and maturity," Ecological Modelling, Elsevier, vol. 222(23), pages 3838-3848.
    15. Fetahi, Tadesse & Schagerl, Michael & Mengistou, Seyoum & Libralato, Simone, 2011. "Food web structure and trophic interactions of the tropical highland lake Hayq, Ethiopia," Ecological Modelling, Elsevier, vol. 222(3), pages 804-813.
    16. Heymans, Johanna Jacomina & Coll, Marta & Link, Jason S. & Mackinson, Steven & Steenbeek, Jeroen & Walters, Carl & Christensen, Villy, 2016. "Best practice in Ecopath with Ecosim food-web models for ecosystem-based management," Ecological Modelling, Elsevier, vol. 331(C), pages 173-184.
    17. Gray DiLeone, A.M. & Ainsworth, C.H., 2019. "Effects of Karenia brevis harmful algal blooms on fish community structure on the West Florida Shelf," Ecological Modelling, Elsevier, vol. 392(C), pages 250-267.
    18. Semaria Moga Lencha & Jens Tränckner & Mihret Dananto, 2021. "Assessing the Water Quality of Lake Hawassa Ethiopia—Trophic State and Suitability for Anthropogenic Uses—Applying Common Water Quality Indices," IJERPH, MDPI, vol. 18(17), pages 1-31, August.
    19. Feroz Khan, M. & Panikkar, Preetha, 2009. "Assessment of impacts of invasive fishes on the food web structure and ecosystem properties of a tropical reservoir in India," Ecological Modelling, Elsevier, vol. 220(18), pages 2281-2290.
    20. Wang, Ying & Duan, Lijie & Li, Shiyu & Zeng, Zeyu & Failler, Pierre, 2015. "Modeling the effect of the seasonal fishing moratorium on the Pearl River Estuary using ecosystem simulation," Ecological Modelling, Elsevier, vol. 312(C), pages 406-416.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:291:y:2014:i:c:p:82-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.