IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v264y2013icp143-156.html
   My bibliography  Save this article

Effects of hunting, fishing and climate change on the Hudson Bay marine ecosystem: II. Ecosystem model future projections

Author

Listed:
  • Hoover, Carie
  • Pitcher, Tony
  • Christensen, Villy

Abstract

Simulations testing the future impacts of harvest and climate change to the Hudson Bay marine ecosystem were created utilizing an existing Ecopath with Ecosim model (Hoover et al., 2013). Building on past simulations depicting known changes to the region, a suite of future scenarios was constructed to include a variety of climate change and harvest levels. Previously identified ecosystem shifts favoring pelagic species (zooplankton, planktivorous fish) over benthic species (benthos, benthic feeding fish), are further exaggerated under future climate scenarios. Environmental forcing was incorporated to mimic the declines in sea ice, and increases in temperature causing shifts in the food web from an ice algae–benthos–benthic fish pathway to a spring bloom–zooplankton–planktivorous fish dominated ecosystem. Future simulations indicate some stocks are unable to sustain current harvest levels until the end of the future simulations (2069), and may be extirpated (narwhal, eastern Hudson Bay beluga, polar bears, and walrus). Larger populations of marine mammals (ringed seals and western Hudson Bay beluga) are identified to increase in biomass even under extreme harvest and climate scenarios (a high future climate scenario coupled with a doubling in harvest rates). Harvest mortality is highlighted as an important stressor for some marine mammal stocks and should be investigated further when setting future harvest or conservation targets.

Suggested Citation

  • Hoover, Carie & Pitcher, Tony & Christensen, Villy, 2013. "Effects of hunting, fishing and climate change on the Hudson Bay marine ecosystem: II. Ecosystem model future projections," Ecological Modelling, Elsevier, vol. 264(C), pages 143-156.
  • Handle: RePEc:eee:ecomod:v:264:y:2013:i:c:p:143-156
    DOI: 10.1016/j.ecolmodel.2013.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013000379
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mette Hein & Kaj Sand-Jensen, 1997. "CO2 increases oceanic primary production," Nature, Nature, vol. 388(6642), pages 526-527, August.
    2. Victor Smetacek & Stephen Nicol, 2005. "Polar ocean ecosystems in a changing world," Nature, Nature, vol. 437(7057), pages 362-368, September.
    3. Hoover, Carie & Pitcher, Tony & Christensen, Villy, 2013. "Effects of hunting, fishing and climate change on the Hudson Bay marine ecosystem: I. Re-creating past changes 1970–2009," Ecological Modelling, Elsevier, vol. 264(C), pages 130-142.
    4. Julienne Stroeve & Walter Meier, 2012. "Arctic Sea Ice Decline," Chapters, in: Guoxiang Liu (ed.), Greenhouse Gases - Emission, Measurement and Management, IntechOpen.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tedesco, Letizia & Vichi, Marcello & Thomas, David N., 2012. "Process studies on the ecological coupling between sea ice algae and phytoplankton," Ecological Modelling, Elsevier, vol. 226(C), pages 120-138.
    2. Diebold, Francis X. & Rudebusch, Glenn D., 2022. "Probability assessments of an ice-free Arctic: Comparing statistical and climate model projections," Journal of Econometrics, Elsevier, vol. 231(2), pages 520-534.
    3. Bourret, A. & Martin, Y. & Troussellier, M., 2007. "Modelling the response of microbial food web to an increase of atmospheric CO2 partial pressure in a marine Mediterranean coastal ecosystem (Brusc Lagoon, France)," Ecological Modelling, Elsevier, vol. 208(2), pages 189-204.
    4. Brock, W. & Xepapadeas, A., 2017. "Climate change policy under polar amplification," European Economic Review, Elsevier, vol. 99(C), pages 93-112.
    5. Brianne K Soulen & Kristina Cammen & Thomas F Schultz & David W Johnston, 2013. "Factors Affecting Harp Seal (Pagophilus groenlandicus) Strandings in the Northwest Atlantic," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-9, July.
    6. James Ford & Tristan Pearce & Jason Prno & Frank Duerden & Lea Berrang Ford & Tanya Smith & Maude Beaumier, 2011. "Canary in a coal mine: perceptions of climate change risks and response options among Canadian mine operations," Climatic Change, Springer, vol. 109(3), pages 399-415, December.
    7. Patel, Anil Kumar & Singhania, Reeta Rani & Dong, Cheng-Di & Obulisami, Parthiba Karthikeyan & Sim, Sang Jun, 2021. "Mixotrophic biorefinery: A promising algal platform for sustainable biofuels and high value coproducts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Marc Audi & Amjad Ali & Mohamad Kassem, 2020. "Greenhouse Gases: A Review of Losses and Benefits," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 403-418.
    9. Bindu Panikkar & Benjamin Lemmond, 2020. "Being on Land and Sea in Troubled Times: Climate Change and Food Sovereignty in Nunavut," Land, MDPI, vol. 9(12), pages 1-18, December.
    10. Kaiser, Brooks A. & Bakanev, Sergey & Bertelsen, Rasmus Gjedsø & Carson, Marcus & Eide, Arne & Fernandez, Linda & Halpin, Patrick & Izmalkov, Sergei & Kyhn, Line A. & Österblom, Henrik & Punt, Maarten, 2015. "Spatial issues in Arctic marine resource governance workshop summary and comment," Marine Policy, Elsevier, vol. 58(C), pages 1-5.
    11. H. Chanakya & Durga Mahapatra & R. Sarada & R. Abitha, 2013. "Algal biofuel production and mitigation potential in India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 113-136, January.
    12. Steven C. Amstrup & Hal Caswell & Eric DeWeaver & Ian Stirling & David C. Douglas & Bruce G. Marcot & Christine M. Hunter, 2009. "Rebuttal of “Polar Bear Population Forecasts: A Public-Policy Forecasting Audit”," Interfaces, INFORMS, vol. 39(4), pages 353-369, August.
    13. Pereira, Tony, 2009. "Sustainability: An integral engineering design approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1133-1137, June.
    14. Pang, Na & Gu, Xiangyu & Chen, Shulin & Kirchhoff, Helmut & Lei, Hanwu & Roje, Sanja, 2019. "Exploiting mixotrophy for improving productivities of biomass and co-products of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 450-460.
    15. Zhenyan Zhang & Qi Zhang & Bingfeng Chen & Yitian Yu & Tingzhang Wang & Nuohan Xu & Xiaoji Fan & Josep Penuelas & Zhengwei Fu & Ye Deng & Yong-Guan Zhu & Haifeng Qian, 2024. "Global biogeography of microbes driving ocean ecological status under climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Anders Levermann & Jonathan Bamber & Sybren Drijfhout & Andrey Ganopolski & Winfried Haeberli & Neil Harris & Matthias Huss & Kirstin Krüger & Timothy Lenton & Ronald Lindsay & Dirk Notz & Peter Wadha, 2012. "Potential climatic transitions with profound impact on Europe," Climatic Change, Springer, vol. 110(3), pages 845-878, February.
    17. Julienne Stroeve & Mark Serreze & Marika Holland & Jennifer Kay & James Malanik & Andrew Barrett, 2012. "The Arctic’s rapidly shrinking sea ice cover: a research synthesis," Climatic Change, Springer, vol. 110(3), pages 1005-1027, February.
    18. Carscallen, W. Mather A. & Romanuk, Tamara N., 2012. "Structure and robustness to species loss in Arctic and Antarctic ice-shelf meta-ecosystem webs," Ecological Modelling, Elsevier, vol. 245(C), pages 208-218.
    19. Krishna, Shubham & Pahlow, Markus & Schartau, Markus, 2019. "Comparison of two carbon-nitrogen regulatory models calibrated with mesocosm data," Ecological Modelling, Elsevier, vol. 411(C).
    20. Hui-Zhen Fu & Yuh-Shan Ho, 2016. "Highly cited Antarctic articles using Science Citation Index Expanded: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 337-357, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:264:y:2013:i:c:p:143-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.