IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v252y2013icp53-62.html
   My bibliography  Save this article

Ecological exergy as an indicator of land-use impacts on functional guilds in river ecosystems

Author

Listed:
  • Li, Fengqing
  • Bae, Mi-Jung
  • Kwon, Yong-Su
  • Chung, Namil
  • Hwang, Soon-Jin
  • Park, Sang-Jung
  • Park, Hae-Kyung
  • Kong, Dong Soo
  • Park, Young-Seuk

Abstract

The cumulative effect of land-use changes is one of the most important factors contributing to the continuous deterioration of river ecosystems. We used ecological exergy to evaluate the impacts of land-use changes on functional guilds of benthic macroinvertebrates. We classified 353 sampling sites into 3 groups based on land-use types: forested, agricultural, and urban rivers. For each sampling site, we calculated ecological exergy based on 5 trophic groups of macroinvertebrates. Differences in exergy, specific exergy, and structural metrics (i.e. species richness and Shannon index) suggested that land-use type was an important determinant of the composition of macroinvertebrate communities. Exergy values of the functional feeding groups and trophic groups were used as input data to train self-organizing maps – unsupervised artificial neural networks. The results showed that functional guilds responded differently to different land-use types: scrapers and carnivores dominated the forested rivers, whilst predators and omnivores, and gatherer-collectors and detritivores dominated agricultural and urban rivers, respectively. These results suggest that ecological exergy can be used as a functional bioassessment indicator to evaluate river condition. A generalized additive model and random forest also highlighted that a combination of both conventional structural indicators (e.g. species richness and Shannon index) and novel functional indicators (e.g. exergy and specific exergy) can be used to assess biotic integrity.

Suggested Citation

  • Li, Fengqing & Bae, Mi-Jung & Kwon, Yong-Su & Chung, Namil & Hwang, Soon-Jin & Park, Sang-Jung & Park, Hae-Kyung & Kong, Dong Soo & Park, Young-Seuk, 2013. "Ecological exergy as an indicator of land-use impacts on functional guilds in river ecosystems," Ecological Modelling, Elsevier, vol. 252(C), pages 53-62.
  • Handle: RePEc:eee:ecomod:v:252:y:2013:i:c:p:53-62
    DOI: 10.1016/j.ecolmodel.2012.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012004711
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Young-Seuk & Song, Mi-Young & Park, Young-Cheol & Oh, Kyung-Hee & Cho, Eungchun & Chon, Tae-Soo, 2007. "Community patterns of benthic macroinvertebrates collected on the national scale in Korea," Ecological Modelling, Elsevier, vol. 203(1), pages 26-33.
    2. Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Sheng & Wang Xu & Long Chen & Lei Wang & Yudong Wang & Yihong Liu & Linshen Xie, 2022. "Effect of Urban River Morphology on the Structure of Macroinvertebrate Communities in a Subtropical Urban River," Sustainability, MDPI, vol. 14(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fengqing Li & Namil Chung & Mi-Jung Bae & Yong-Su Kwon & Tae-Sung Kwon & Young-Seuk Park, 2013. "Temperature change and macroinvertebrate biodiversity: assessments of organism vulnerability and potential distributions," Climatic Change, Springer, vol. 119(2), pages 421-434, July.
    2. Colombo, Emanuela & Rocco, Matteo V. & Toro, Claudia & Sciubba, Enrico, 2015. "An exergy-based approach to the joint economic and environmental impact assessment of possible photovoltaic scenarios: A case study at a regional level in Italy," Ecological Modelling, Elsevier, vol. 318(C), pages 64-74.
    3. Xia, X.H. & Hu, Y. & Chen, G.Q. & Alsaedi, A. & Hayat, T. & Wu, X.D., 2015. "Vertical specialization, global trade and energy consumption for an urban economy: A value added export perspective for Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 49-58.
    4. Qi, Hai & Dong, Zhiliang & Dong, Shaohui & Sun, Xiaotian & Zhao, Yiran & Li, Yu, 2021. "Extended exergy accounting for smelting and pressing of metals industry in China," Resources Policy, Elsevier, vol. 74(C).
    5. Rocco, M.V. & Colombo, E. & Sciubba, E., 2014. "Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting method," Applied Energy, Elsevier, vol. 113(C), pages 1405-1420.
    6. Bedoya, David & Novotny, Vladimir & Manolakos, Elias S., 2009. "Instream and offstream environmental conditions and stream biotic integrity," Ecological Modelling, Elsevier, vol. 220(19), pages 2393-2406.
    7. Shao, Ling & Wu, Zi & Chen, G.Q., 2013. "Exergy based ecological footprint accounting for China," Ecological Modelling, Elsevier, vol. 252(C), pages 83-96.
    8. Kharrazi, Ali & Rovenskaya, Elena & Fath, Brian D. & Yarime, Masaru & Kraines, Steven, 2013. "Quantifying the sustainability of economic resource networks: An ecological information-based approach," Ecological Economics, Elsevier, vol. 90(C), pages 177-186.
    9. Rocco, Matteo V. & Di Lucchio, Alberto & Colombo, Emanuela, 2017. "Exergy Life Cycle Assessment of electricity production from Waste-to-Energy technology: A Hybrid Input-Output approach," Applied Energy, Elsevier, vol. 194(C), pages 832-844.
    10. Amiri, Zahra & Asgharipour, Mohammad Reza & Campbell, Daniel E. & Armin, Mohammad, 2020. "Extended exergy analysis (EAA) of two canola farming systems in Khorramabad, Iran," Agricultural Systems, Elsevier, vol. 180(C).
    11. Dai, Jing & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2015. "Sustainability-based economic and ecological evaluation of a rural biogas-linked agro-ecosystem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 347-355.
    12. Song, Dan & Lin, Ling & Wu, Ye, 2019. "Extended exergy accounting for a typical cement industry in China," Energy, Elsevier, vol. 174(C), pages 678-686.
    13. An, Qier & An, Haizhong & Wang, Lang & Gao, Xiangyun & Lv, Na, 2015. "Analysis of embodied exergy flow between Chinese industries based on network theory," Ecological Modelling, Elsevier, vol. 318(C), pages 26-35.
    14. Yang, J. & Chen, B., 2014. "Extended exergy-based sustainability accounting of a household biogas project in rural China," Energy Policy, Elsevier, vol. 68(C), pages 264-272.
    15. Roozbeh Nia, Ali & Awasthi, Anjali & Bhuiyan, Nadia, 2023. "Integrate exergy costs and carbon reduction policy in order to optimize the sustainability development of coal supply chains in uncertain conditions," International Journal of Production Economics, Elsevier, vol. 257(C).
    16. Ricardo Manso & Tânia Sousa & Tiago Domingos, 2017. "Do the Different Exergy Accounting Methodologies Provide Consistent or Contradictory Results? A Case Study with the Portuguese Agricultural, Forestry and Fisheries Sector," Energies, MDPI, vol. 10(8), pages 1-31, August.
    17. Dong-Kyun Kim & Hyunbin Jo & Inwoo Han & Ihn-Sil Kwak, 2019. "Explicit Characterization of Spatial Heterogeneity Based on Water Quality, Sediment Contamination, and Ichthyofauna in a Riverine-to-Coastal Zone," IJERPH, MDPI, vol. 16(3), pages 1-17, January.
    18. Ricardo Manso & Tânia Sousa & Tiago Domingos, 2018. "The Way Forward in Quantifying Extended Exergy Efficiency," Energies, MDPI, vol. 11(10), pages 1-32, September.
    19. Wang, Xibo & Wei, Wendong & Ge, Jianping & Wu, Bin & Bu, Wei & Li, Jiashuo & Yao, Mingtao & Guan, Qing, 2017. "Embodied rare earths flow between industrial sectors in China: A complex network approach," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 363-374.
    20. Pil Soo Kim & Yeo-Rang Lee & Yong-Su Kwon & Jin-Woo Bae & Sung-Jae Lee & Young-Seuk Park, 2021. "Differences of Gut Microbiota in the Freshwater Blackworm ( Lumbriculus variegatus : Oligochaeta) in Two Different Habitat Conditions," IJERPH, MDPI, vol. 18(19), pages 1-11, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:252:y:2013:i:c:p:53-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.