IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10046-d887595.html
   My bibliography  Save this article

Effect of Urban River Morphology on the Structure of Macroinvertebrate Communities in a Subtropical Urban River

Author

Listed:
  • Qiang Sheng

    (Zhejiang Province Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China)

  • Wang Xu

    (Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China)

  • Long Chen

    (State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Research Academy of Environmental Sciences, Shenzhen 518001, China)

  • Lei Wang

    (State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Research Academy of Environmental Sciences, Shenzhen 518001, China)

  • Yudong Wang

    (State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Research Academy of Environmental Sciences, Shenzhen 518001, China)

  • Yihong Liu

    (State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Research Academy of Environmental Sciences, Shenzhen 518001, China)

  • Linshen Xie

    (State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Research Academy of Environmental Sciences, Shenzhen 518001, China)

Abstract

Channelization is the most common hydraulic modification of urban rivers. Here, we assessed the effects of urban river morphology on benthic communities by analyzing the characteristics of benthic communities at various sites in channelized and natural rivers of the Longgang River system in southern China. We detected four Clitellata species, five Oligochaeta species, one Polychaeta species, 10 Gastropoda genera/species, two Bivalvia genera/species, two Crustacea genera/species, and 14 Insecta genera/species. Insecta and Oligochaeta were the dominant classes in the wet and dry seasons, and Chironomus plumosus was the most dominant species. The density of Clitellata was significantly lower in channelized rivers (0–0.74 ind/m 2 ) than in natural rivers (0.61–4.85 ind/m 2 ). The Shannon’s diversity index was significantly lower in channelized rivers (0.66–1.04) than in natural rivers (0.83–1.28) in the wet and dry season. NH 3 .N was positively correlated with Shannon’s diversity index, and chemical oxygen demand and river width were negatively correlated with Shannon’s diversity index. When the concentration of total phosphorus (TP) was low (<3 mg/L), it was positively correlated with Shannon’s diversity index. Our findings indicate that river channel morphology affects benthic faunal structure and diversity, but the effects varied among seasons. Minimized channelization will prevent the loss of aquatic biodiversity in subtropical urban rivers, as will preservation of natural rivers.

Suggested Citation

  • Qiang Sheng & Wang Xu & Long Chen & Lei Wang & Yudong Wang & Yihong Liu & Linshen Xie, 2022. "Effect of Urban River Morphology on the Structure of Macroinvertebrate Communities in a Subtropical Urban River," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10046-:d:887595
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10046/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10046/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Fengqing & Bae, Mi-Jung & Kwon, Yong-Su & Chung, Namil & Hwang, Soon-Jin & Park, Sang-Jung & Park, Hae-Kyung & Kong, Dong Soo & Park, Young-Seuk, 2013. "Ecological exergy as an indicator of land-use impacts on functional guilds in river ecosystems," Ecological Modelling, Elsevier, vol. 252(C), pages 53-62.
    2. Zhang, Zimo & Peng, Jian & Xu, Zihan & Wang, Xiaoyu & Meersmans, Jeroen, 2021. "Ecosystem services supply and demand response to urbanization: A case study of the Pearl River Delta, China," Ecosystem Services, Elsevier, vol. 49(C).
    3. Hua-peng Qin & Qiong Su & Soon-Thiam Khu & Nv Tang, 2014. "Water Quality Changes during Rapid Urbanization in the Shenzhen River Catchment: An Integrated View of Socio-Economic and Infrastructure Development," Sustainability, MDPI, vol. 6(10), pages 1-19, October.
    4. Mingxing Chen & Hua Zhang & Weidong Liu & Wenzhong Zhang, 2014. "The Global Pattern of Urbanization and Economic Growth: Evidence from the Last Three Decades," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-15, August.
    5. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2020. "Model uncertainty, nonlinearities and out-of-sample comparison: evidence from international technology diffusion," Working Papers hal-02790523, HAL.
    2. Li, Shuoshuo & Liu, Yaobin & Wei, Guoen & Bi, Mo & He, Bao-Jie, 2024. "Carbon surplus or carbon deficit under land use transformation in China?," Land Use Policy, Elsevier, vol. 143(C).
    3. Zhen Yang & Jun Lei & Jian-Gang Li, 2019. "Identifying the Determinants of Urbanization in Prefecture-Level Cities in China: A Quantitative Analysis Based on Spatial Production Theory," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    4. George Kyriakarakos & Athanasios T. Balafoutis & Dionysis Bochtis, 2020. "Proposing a Paradigm Shift in Rural Electrification Investments in Sub-Saharan Africa through Agriculture," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    5. Chen, Mingxing & Liu, Weidong & Lu, Dadao, 2016. "Challenges and the way forward in China’s new-type urbanization," Land Use Policy, Elsevier, vol. 55(C), pages 334-339.
    6. Alina Botezat & Mihaela David & Cristian Incaltarau & Peter Nijkamp, 2021. "The Illusion of Urbanization: Impact of Administrative Reform on Communities’ Resilience," International Regional Science Review, , vol. 44(1), pages 33-84, January.
    7. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    8. Rafael M. Tassitano & Robert G. Weaver & Maria Cecília M. Tenório & Keith Brazendale & Michael W. Beets, 2020. "Clusters of non-dietary obesogenic behaviors among adolescents in Brazil: a latent profile analysis," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 65(6), pages 881-891, July.
    9. Xinxin Fu & Xiaofeng Wang & Jitao Zhou & Jiahao Ma, 2021. "Optimizing the Production-Living-Ecological Space for Reducing the Ecosystem Services Deficit," Land, MDPI, vol. 10(10), pages 1-17, September.
    10. Kukkonen, M.O. & Khamis, M. & Muhammad, M.J. & Käyhkö, N. & Luoto, M., 2022. "Modeling direct above-ground carbon loss due to urban expansion in Zanzibar City Region, Tanzania," Land Use Policy, Elsevier, vol. 112(C).
    11. Sandip Sarker & Arifuzzaman Khan & Mehdad Mamur Mannan, 2016. "Urban population and economic growth: South Asia perspective," European Journal of Government and Economics, Europa Grande, vol. 5(1), pages 64-75, June.
    12. Bing Xue & Mario Tobias, 2015. "Sustainability in China: Bridging Global Knowledge with Local Action," Sustainability, MDPI, vol. 7(4), pages 1-7, March.
    13. Chunshan Zhou & Jing Chen & Shaojian Wang, 2018. "Does Migrant Status and Household Registration Matter? Examining the Effects of City Size on Self-Rated Health," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
    14. Benjamin Säfken & Thomas Kneib, 2020. "Conditional covariance penalties for mixed models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 990-1010, September.
    15. Sohail Farooq & Shabana Parveen & Habib Elahi Sahibzada, 2019. "Impact of Industrialization, Urbanization and Energy Consumption on Environmental Degradation: Evidence from India," Global Economics Review, Humanity Only, vol. 4(2), pages 1-12, June.
    16. Chamara P. Liyanage & Koichi Yamada, 2017. "Impact of Population Growth on the Water Quality of Natural Water Bodies," Sustainability, MDPI, vol. 9(8), pages 1-14, August.
    17. Wei Shui & Kexin Wu & Yong Du & Haifeng Yang, 2021. "The Trade-Offs between Supply and Demand Dynamics of Ecosystem Services in the Bay Areas of Metropolitan Regions: A Case Study in Quanzhou, China," Land, MDPI, vol. 11(1), pages 1-15, December.
    18. Khamma, Thulasi Ram & Zhang, Yuming & Guerrier, Stéphane & Boubekri, Mohamed, 2020. "Generalized additive models: An efficient method for short-term energy prediction in office buildings," Energy, Elsevier, vol. 213(C).
    19. Alayne M Adams & Rubana Islam & Sifat Shahana Yusuf & Anthony Panasci & Nancy Crowell, 2020. "Healthcare seeking for chronic illness among adult slum dwellers in Bangladesh: A descriptive cross-sectional study in two urban settings," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-18, June.
    20. Matteo Cecchetto & Agnès Dettai & Cyril Gallut & Matthias Obst & Piotr Kuklinski & Piotr Balazy & Maciej Chelchowski & Magdalena Małachowicz & Anita Poćwierz-Kotus & Małgorzata Zbawicka & Henning Reis, 2024. "Seasonality of primary production explains the richness of pioneering benthic communities," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10046-:d:887595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.