IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v146y2014icp324-334.html
   My bibliography  Save this article

Uncertainty assessment of the agro-hydrological SWAP model application at field scale: A case study in a dry region

Author

Listed:
  • Shafiei, Mojtaba
  • Ghahraman, Bijan
  • Saghafian, Bahram
  • Davary, Kamran
  • Pande, Saket
  • Vazifedoust, Majid

Abstract

Uncertainty analysis can provide useful insights into the sources and effects of uncertainty for decision makers to achieve the goals of reliability and sustainability in water management. This study presents parameters uncertainty of a physically based soil–water–atmosphere–plant (SWAP) model and its effect on model prediction within the generalized likelihood uncertainty estimation (GLUE) framework for two irrigated agricultural fields in a dry region of Iran. To simulate soil water dynamics of the two fields, the SWAP model is calibrated using soil moisture observation data. The results demonstrate that predictive uncertainty in soil moisture during the growing season in both fields is relatively small and a good model performance is achieved. Parameter uncertainty analysis of soil hydraulic parameters showed that in spite of similarity of soil texture in both the fields, the estimated parameters (i.e. posterior distribution) exhibit different behaviors. This was because of the dynamics of soil structure which varies considerably within cultivated fields during the growing season. Moreover, the simulated water balance fluxes (actual evapotranspiration and deep percolation) indicate that in irrigated agricultural fields in dry regions, the precision of actual evapotranspiration predicted by the SWAP model is high (i.e. a high degree of model reliability is achieved). However, deep percolation fluxes show higher variation (lower precision) and are more sensitive to soil hydraulic conductivity parameterization. Finally, this study reveals the importance of uncertainty analysis to estimate the degree of reliability associated with model predictions as an important first step for providing decision makers with realistic information about the models outputs.

Suggested Citation

  • Shafiei, Mojtaba & Ghahraman, Bijan & Saghafian, Bahram & Davary, Kamran & Pande, Saket & Vazifedoust, Majid, 2014. "Uncertainty assessment of the agro-hydrological SWAP model application at field scale: A case study in a dry region," Agricultural Water Management, Elsevier, vol. 146(C), pages 324-334.
  • Handle: RePEc:eee:agiwat:v:146:y:2014:i:c:p:324-334
    DOI: 10.1016/j.agwat.2014.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414002790
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karimi, Poolad & Qureshi, Asad Sarwar & Bahramloo, Reza & Molden, David, 2012. "Reducing carbon emissions through improved irrigation and groundwater management: A case study from Iran," Agricultural Water Management, Elsevier, vol. 108(C), pages 52-60.
    2. He, Jianqiang & Jones, James W. & Graham, Wendy D. & Dukes, Michael D., 2010. "Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method," Agricultural Systems, Elsevier, vol. 103(5), pages 256-264, June.
    3. Droogers, P. & Bastiaanssen, W. G. M. & Beyazgul, M. & Kayam, Y. & Kite, G. W. & Murray-Rust, H., 2000. "Distributed agro-hydrological modeling of an irrigation system in western Turkey," Agricultural Water Management, Elsevier, vol. 43(2), pages 183-202, March.
    4. Vazifedoust, M. & van Dam, J.C. & Feddes, R.A. & Feizi, M., 2008. "Increasing water productivity of irrigated crops under limited water supply at field scale," Agricultural Water Management, Elsevier, vol. 95(2), pages 89-102, February.
    5. Noory, H. & van der Zee, S.E.A.T.M. & Liaghat, A.-M. & Parsinejad, M. & van Dam, J.C., 2011. "Distributed agro-hydrological modeling with SWAP to improve water and salt management of the Voshmgir Irrigation and Drainage Network in Northern Iran," Agricultural Water Management, Elsevier, vol. 98(6), pages 1062-1070, April.
    6. Clemente, R. S. & Jong, R. De & Hayhoe, H. N. & Reynolds, W. D. & Hares, M., 1994. "Testing and comparison of three unsaturated soil water flow models," Agricultural Water Management, Elsevier, vol. 25(2), pages 135-152, April.
    7. Juston, John & Andrén, Olof & Kätterer, Thomas & Jansson, Per-Erik, 2010. "Uncertainty analyses for calibrating a soil carbon balance model to agricultural field trial data in Sweden and Kenya," Ecological Modelling, Elsevier, vol. 221(16), pages 1880-1888.
    8. Singh, Uttam Kumar & Ren, Li & Kang, Shaozhong, 2010. "Simulation of soil water in space and time using an agro-hydrological model and remote sensing techniques," Agricultural Water Management, Elsevier, vol. 97(8), pages 1210-1220, August.
    9. Bonfante, A. & Basile, A. & Acutis, M. & De Mascellis, R. & Manna, P. & Perego, A. & Terribile, F., 2010. "SWAP, CropSyst and MACRO comparison in two contrasting soils cropped with maize in Northern Italy," Agricultural Water Management, Elsevier, vol. 97(7), pages 1051-1062, July.
    10. Chen, Chao & Wang, Enli & Yu, Qiang, 2010. "Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1175-1184, August.
    11. Singh, R. & van Dam, J.C. & Feddes, R.A., 2006. "Water productivity analysis of irrigated crops in Sirsa district, India," Agricultural Water Management, Elsevier, vol. 82(3), pages 253-278, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, P. & Sarangi, A. & Singh, D.K. & Parihar, S.S. & Sahoo, R.N., 2015. "Simulation of salt dynamics in the root zone and yield of wheat crop under irrigated saline regimes using SWAP model," Agricultural Water Management, Elsevier, vol. 148(C), pages 72-83.
    2. Pinto, Victor Meriguetti & Reichardt, Klaus & van Dam, Jos & Lier, Quirijn de Jong van & Bruno, Isabeli Pereira & Durigon, Angelica & Dourado-Neto, Durval & Bortolotto, Rafael Pivotto, 2015. "Deep drainage modeling for a fertigated coffee plantation in the Brazilian savanna," Agricultural Water Management, Elsevier, vol. 148(C), pages 130-140.
    3. Li, Pei & Ren, Li, 2023. "Evaluating the differences in irrigation methods for winter wheat under limited irrigation quotas in the water-food-economy nexus in the North China Plain," Agricultural Water Management, Elsevier, vol. 289(C).
    4. Amir Sedaghatdoost & Hamed Ebrahimian & Abdolmajid Liaghat, 2019. "An Inverse Modeling Approach to Calibrate Parameters for a Drainage Model with Two Optimization Algorithms on Homogeneous/Heterogeneous Soil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1383-1395, March.
    5. Xie, Tao & Liu, Xinhui & Sun, Tao, 2011. "The effects of groundwater table and flood irrigation strategies on soil water and salt dynamics and reed water use in the Yellow River Delta, China," Ecological Modelling, Elsevier, vol. 222(2), pages 241-252.
    6. Wang, Qingming & Huo, Zailin & Zhang, Liudong & Wang, Jianhua & Zhao, Yong, 2016. "Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China," Agricultural Water Management, Elsevier, vol. 163(C), pages 125-138.
    7. Karimi, Poolad & Qureshi, Asad Sarwar & Bahramloo, Reza & Molden, David, 2012. "Reducing carbon emissions through improved irrigation and groundwater management: A case study from Iran," Agricultural Water Management, Elsevier, vol. 108(C), pages 52-60.
    8. Noory, H. & van der Zee, S.E.A.T.M. & Liaghat, A.-M. & Parsinejad, M. & van Dam, J.C., 2011. "Distributed agro-hydrological modeling with SWAP to improve water and salt management of the Voshmgir Irrigation and Drainage Network in Northern Iran," Agricultural Water Management, Elsevier, vol. 98(6), pages 1062-1070, April.
    9. Dokoohaki, Hamze & Gheysari, Mahdi & Mousavi, Sayed-Farhad & Zand-Parsa, Shahrokh & Miguez, Fernando E. & Archontoulis, Sotirios V. & Hoogenboom, Gerrit, 2016. "Coupling and testing a new soil water module in DSSAT CERES-Maize model for maize production under semi-arid condition," Agricultural Water Management, Elsevier, vol. 163(C), pages 90-99.
    10. Xu, Xu & Huang, Guanhua & Sun, Chen & Pereira, Luis S. & Ramos, Tiago B. & Huang, Quanzhong & Hao, Yuanyuan, 2013. "Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River basin," Agricultural Water Management, Elsevier, vol. 125(C), pages 46-60.
    11. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2015. "Assessment of irrigation performance and water productivity in irrigated areas of the middle Heihe River basin using a distributed agro-hydrological model," Agricultural Water Management, Elsevier, vol. 147(C), pages 67-81.
    12. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2019. "Hydrological complexities in irrigated agro-ecosystems with fragmented land cover types and shallow groundwater: Insights from a distributed hydrological modeling method," Agricultural Water Management, Elsevier, vol. 213(C), pages 868-881.
    13. Zhang, Jing & Chen, Yi & Zhang, Zhao, 2020. "A remote sensing-based scheme to improve regional crop model calibration at sub-model component level," Agricultural Systems, Elsevier, vol. 181(C).
    14. Xiaowen Wang & Huanjie Cai & Liang Li & Xiaoyun Wang, 2020. "Estimating Soil Water Content and Evapotranspiration of Winter Wheat under Deficit Irrigation Based on SWAP Model," Sustainability, MDPI, vol. 12(22), pages 1-29, November.
    15. Xue, Jing & Ren, Li, 2016. "Evaluation of crop water productivity under sprinkler irrigation regime using a distributed agro-hydrological model in an irrigation district of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 350-365.
    16. Xiong, Lvyang & Xu, Xu & Engel, Bernard & Xiong, Yunwu & Huang, Quanzhong & Huang, Guanhua, 2021. "Predicting agroecosystem responses to identify appropriate water-saving management in arid irrigated regions with shallow groundwater: Realization on a regional scale," Agricultural Water Management, Elsevier, vol. 247(C).
    17. Minacapilli, M. & Iovino, M. & D'Urso, G., 2008. "A distributed agro-hydrological model for irrigation water demand assessment," Agricultural Water Management, Elsevier, vol. 95(2), pages 123-132, February.
    18. Kiymaz, Sultan & Ertek, Ahmet, 2015. "Water use and yield of sugar beet (Beta vulgaris L.) under drip irrigation at different water regimes," Agricultural Water Management, Elsevier, vol. 158(C), pages 225-234.
    19. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Keikha, Mahdi & Darzi- Naftchali, Abdullah & Motevali, Ali & Valipour, Mohammad, 2023. "Effect of nitrogen management on the environmental and economic sustainability of wheat production in different climates," Agricultural Water Management, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:146:y:2014:i:c:p:324-334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.