IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v240y2012icp29-40.html
   My bibliography  Save this article

Improving model parameter estimation using coupling relationships between vegetation production and ecosystem respiration

Author

Listed:
  • Yuan, Wenping
  • Liang, Shunlin
  • Liu, Shuguang
  • Weng, Ensheng
  • Luo, Yiqi
  • Hollinger, David
  • Zhang, Haicheng

Abstract

Data assimilation techniques and inverse analysis have been applied to extract ecological knowledge from ecosystem observations. However, the number of parameters in ecosystem models that can be constrained is limited by conventional inverse analysis. This study aims to increase the number of parameters that can be constrained in parameter inversions by considering the internal relationships among ecosystem processes. Our previous study has reported thermal adaptation of net ecosystem exchange (NEE). Ecosystems tend to transfer from a carbon source to sink when the air temperature exceeds the mean annual temperature, and attain their maximum uptake when the temperature reaches the long-term growing season mean. Because NEE is the difference between gross primary production (GPP) and ecosystem respiration (ER), the adaptation of NEE indirectly indicates the coupling relationship between GPP and ER. Five assimilation experiments were conducted with (1) estimated GPP based on eddy flux measurements, (2) estimated GPP and coupling relationship between GPP and ER, (3) observed NEE measurements, (4) observed NEE measurements and internal relationship between GPP and ER and (5) observed NEE, estimated ER and GPP. The results show that the inversion method, using only estimated GPP based on eddy covariance towers, constrained 4 of 16 parameters in the terrestrial ecosystem carbon model, and the improved method using both GPP data and the internal relationship between GPP and ER allowed us to constrain 10 of 16 parameters. The improved method constrained the parameters for ER without additional ER observations, and accordingly improved the model performance substantially for simulating ER. Overall, our method enhances our ability to extract information from ecosystem observations and potentially reduces uncertainty for simulating carbon dynamics across the regional and global scales.

Suggested Citation

  • Yuan, Wenping & Liang, Shunlin & Liu, Shuguang & Weng, Ensheng & Luo, Yiqi & Hollinger, David & Zhang, Haicheng, 2012. "Improving model parameter estimation using coupling relationships between vegetation production and ecosystem respiration," Ecological Modelling, Elsevier, vol. 240(C), pages 29-40.
  • Handle: RePEc:eee:ecomod:v:240:y:2012:i:c:p:29-40
    DOI: 10.1016/j.ecolmodel.2012.04.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012002116
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.04.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ben D. MacArthur & Richard O. C. Oreffo, 2005. "Bridging the gap," Nature, Nature, vol. 433(7021), pages 19-19, January.
    2. Chris Chatfield, 1995. "Model Uncertainty, Data Mining and Statistical Inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 158(3), pages 419-444, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klosterhalfen, A. & Herbst, M. & Weihermüller, L. & Graf, A. & Schmidt, M. & Stadler, A. & Schneider, K. & Subke, J.-A. & Huisman, J.A. & Vereecken, H., 2017. "Multi-site calibration and validation of a net ecosystem carbon exchange model for croplands," Ecological Modelling, Elsevier, vol. 363(C), pages 137-156.
    2. Liu, Min & He, Honglin & Ren, Xiaoli & Sun, Xiaomin & Yu, Guirui & Han, Shijie & Wang, Huimin & Zhou, Guoyi, 2015. "The effects of constraining variables on parameter optimization in carbon and water flux modeling over different forest ecosystems," Ecological Modelling, Elsevier, vol. 303(C), pages 30-41.
    3. Hanqing Ma & Chunfeng Ma & Xin Li & Wenping Yuan & Zhengjia Liu & Gaofeng Zhu, 2020. "Sensitivity and Uncertainty Analyses of Flux-based Ecosystem Model towards Improvement of Forest GPP Simulation," Sustainability, MDPI, vol. 12(7), pages 1-18, March.
    4. Yuan, Wenping & Cai, Wenwen & Liu, Shuguang & Dong, Wenjie & Chen, Jiquan & Arain, M. Altaf & Blanken, Peter D. & Cescatti, Alessandro & Wohlfahrt, Georg & Georgiadis, Teodoro & Genesio, Lorenzo & Gia, 2014. "Vegetation-specific model parameters are not required for estimating gross primary production," Ecological Modelling, Elsevier, vol. 292(C), pages 1-10.
    5. Li, Qianyu & Xia, Jianyang & Shi, Zheng & Huang, Kun & Du, Zhenggang & Lin, Guanghui & Luo, Yiqi, 2016. "Variation of parameters in a Flux-Based Ecosystem Model across 12 sites of terrestrial ecosystems in the conterminous USA," Ecological Modelling, Elsevier, vol. 336(C), pages 57-69.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Xiaodong & Bryan, Brett A. & Paul, Keryn I. & Zhao, Gang, 2012. "Variance-based sensitivity analysis of a forest growth model," Ecological Modelling, Elsevier, vol. 247(C), pages 135-143.
    2. Liu, Min & He, Honglin & Ren, Xiaoli & Sun, Xiaomin & Yu, Guirui & Han, Shijie & Wang, Huimin & Zhou, Guoyi, 2015. "The effects of constraining variables on parameter optimization in carbon and water flux modeling over different forest ecosystems," Ecological Modelling, Elsevier, vol. 303(C), pages 30-41.
    3. Ercan Tomakin, 2014. "Teaching English Tenses (grammar) in the Turkish Texts; A Case of Simple Present Tense: Is?l Maketi Iter," International Journal of Learning and Development, Macrothink Institute, vol. 4(1), pages 115-131, March.
    4. Peter Viggo Jakobsen, 2009. "Small States, Big Influence: The Overlooked Nordic Influence on the Civilian ESDP," Journal of Common Market Studies, Wiley Blackwell, vol. 47(1), pages 81-102, January.
    5. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    6. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    7. Robert Lehmann & Antje Weyh, 2016. "Forecasting Employment in Europe: Are Survey Results Helpful?," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 81-117, September.
    8. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    9. Grace Kite, 2014. "Linked in? Software and Information Technology Services in India’s Economic Development," Journal of South Asian Development, , vol. 9(2), pages 99-119, August.
    10. Spyros Arvanitis & Ursina Kubli & Martin Woerter, 2006. "University-Industry Knowledge Interaction in Switzerland: What University Scientists Think about Co-operation with Private Enterprises," KOF Working papers 06-132, KOF Swiss Economic Institute, ETH Zurich.
    11. Falco, Paolo & Zaccagni, Sarah, 2020. "Promoting social distancing in a pandemic: Beyond the good intentions," OSF Preprints a2nys, Center for Open Science.
    12. Stylos, Nikolaos & Vassiliadis, Chris A. & Bellou, Victoria & Andronikidis, Andreas, 2016. "Destination images, holistic images and personal normative beliefs: Predictors of intention to revisit a destination," Tourism Management, Elsevier, vol. 53(C), pages 40-60.
    13. Anesi, Vincent, 2012. "Secessionism and minority protection in an uncertain world," Journal of Public Economics, Elsevier, vol. 96(1), pages 53-61.
    14. Lee, Yun Shin & Scholtes, Stefan, 2014. "Empirical prediction intervals revisited," International Journal of Forecasting, Elsevier, vol. 30(2), pages 217-234.
    15. Anesi, Vincent, 2012. "Secessionism and minority protection in an uncertain world," Journal of Public Economics, Elsevier, vol. 96(1), pages 53-61.
    16. Deribe Assefa Aga & N. Noorderhaven & B. Vallejo, 2018. "Project beneficiary participation and behavioural intentions promoting project sustainability: The mediating role of psychological ownership," Development Policy Review, Overseas Development Institute, vol. 36(5), pages 527-546, September.
    17. Coleman, Stephen, 2005. "Testing Theories with Qualitative and Quantitative Predictions," MPRA Paper 105171, University Library of Munich, Germany.
    18. Whyte, Sarah & Cartmill, Carrie & Gardezi, Fauzia & Reznick, Richard & Orser, Beverley A. & Doran, Diane & Lingard, Lorelei, 2009. "Uptake of a team briefing in the operating theatre: A Burkean dramatistic analysis," Social Science & Medicine, Elsevier, vol. 69(12), pages 1757-1766, December.
    19. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    20. Alistair Ross, 2018. "Young Europeans: A New Political Generation?," Societies, MDPI, vol. 8(3), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:240:y:2012:i:c:p:29-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.