IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0110407.html
   My bibliography  Save this article

Global Validation of a Process-Based Model on Vegetation Gross Primary Production Using Eddy Covariance Observations

Author

Listed:
  • Dan Liu
  • Wenwen Cai
  • Jiangzhou Xia
  • Wenjie Dong
  • Guangsheng Zhou
  • Yang Chen
  • Haicheng Zhang
  • Wenping Yuan

Abstract

Gross Primary Production (GPP) is the largest flux in the global carbon cycle. However, large uncertainties in current global estimations persist. In this study, we examined the performance of a process-based model (Integrated BIosphere Simulator, IBIS) at 62 eddy covariance sites around the world. Our results indicated that the IBIS model explained 60% of the observed variation in daily GPP at all validation sites. Comparison with a satellite-based vegetation model (Eddy Covariance-Light Use Efficiency, EC-LUE) revealed that the IBIS simulations yielded comparable GPP results as the EC-LUE model. Global mean GPP estimated by the IBIS model was 107.50±1.37 Pg C year−1 (mean value ± standard deviation) across the vegetated area for the period 2000–2006, consistent with the results of the EC-LUE model (109.39±1.48 Pg C year−1). To evaluate the uncertainty introduced by the parameter Vcmax, which represents the maximum photosynthetic capacity, we inversed Vcmax using Markov Chain-Monte Carlo (MCMC) procedures. Using the inversed Vcmax values, the simulated global GPP increased by 16.5 Pg C year−1, indicating that IBIS model is sensitive to Vcmax, and large uncertainty exists in model parameterization.

Suggested Citation

  • Dan Liu & Wenwen Cai & Jiangzhou Xia & Wenjie Dong & Guangsheng Zhou & Yang Chen & Haicheng Zhang & Wenping Yuan, 2014. "Global Validation of a Process-Based Model on Vegetation Gross Primary Production Using Eddy Covariance Observations," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-12, November.
  • Handle: RePEc:plo:pone00:0110407
    DOI: 10.1371/journal.pone.0110407
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110407
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0110407&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0110407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuan, Wenping & Liang, Shunlin & Liu, Shuguang & Weng, Ensheng & Luo, Yiqi & Hollinger, David & Zhang, Haicheng, 2012. "Improving model parameter estimation using coupling relationships between vegetation production and ecosystem respiration," Ecological Modelling, Elsevier, vol. 240(C), pages 29-40.
    2. Marc L. Imhoff & Lahouari Bounoua & Taylor Ricketts & Colby Loucks & Robert Harriss & William T. Lawrence, 2004. "Global patterns in human consumption of net primary production," Nature, Nature, vol. 429(6994), pages 870-873, June.
    3. Li, Xianglan & Liang, Shunlin & Yu, Guirui & Yuan, Wenping & Cheng, Xiao & Xia, Jiangzhou & Zhao, Tianbao & Feng, Jinming & Ma, Zhuguo & Ma, Mingguo & Liu, Shaomin & Chen, Jiquan & Shao, Changliang & , 2013. "Estimation of gross primary production over the terrestrial ecosystems in China," Ecological Modelling, Elsevier, vol. 261, pages 80-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Wenping & Cai, Wenwen & Liu, Shuguang & Dong, Wenjie & Chen, Jiquan & Arain, M. Altaf & Blanken, Peter D. & Cescatti, Alessandro & Wohlfahrt, Georg & Georgiadis, Teodoro & Genesio, Lorenzo & Gia, 2014. "Vegetation-specific model parameters are not required for estimating gross primary production," Ecological Modelling, Elsevier, vol. 292(C), pages 1-10.
    2. Zhang, Yanjie & Pan, Ying & Li, Meng & Wang, Zhipeng & Wu, Junxi & Zhang, Xianzhou & Cao, Yanan, 2021. "Impacts of human appropriation of net primary production on ecosystem regulating services in Tibet," Ecosystem Services, Elsevier, vol. 47(C).
    3. Martínez-Alier, Joan & Pascual, Unai & Vivien, Franck-Dominique & Zaccai, Edwin, 2010. "Sustainable de-growth: Mapping the context, criticisms and future prospects of an emergent paradigm," Ecological Economics, Elsevier, vol. 69(9), pages 1741-1747, July.
    4. Beatrice Asenso Barnieh & Li Jia & Massimo Menenti & Min Jiang & Jie Zhou & Yelong Zeng & Ali Bennour, 2021. "Modeling the Underlying Drivers of Natural Vegetation Occurrence in West Africa with Binary Logistic Regression Method," Sustainability, MDPI, vol. 13(9), pages 1-37, April.
    5. Pritchard, Rose & Ryan, Casey M. & Grundy, Isla & van der Horst, Dan, 2018. "Human Appropriation of Net Primary Productivity and Rural Livelihoods: Findings From Six Villages in Zimbabwe," Ecological Economics, Elsevier, vol. 146(C), pages 115-124.
    6. Hermann, Weston A., 2006. "Quantifying global exergy resources," Energy, Elsevier, vol. 31(12), pages 1685-1702.
    7. Erb, Karl-Heinz & Krausmann, Fridolin & Lucht, Wolfgang & Haberl, Helmut, 2009. "Embodied HANPP: Mapping the spatial disconnect between global biomass production and consumption," Ecological Economics, Elsevier, vol. 69(2), pages 328-334, December.
    8. Murphy, Sinnott & Pincetl, Stephanie, 2013. "Zero waste in Los Angeles: Is the emperor wearing any clothes?," Resources, Conservation & Recycling, Elsevier, vol. 81(C), pages 40-51.
    9. Lauk, Christian & Erb, Karl-Heinz, 2009. "Biomass consumed in anthropogenic vegetation fires: Global patterns and processes," Ecological Economics, Elsevier, vol. 69(2), pages 301-309, December.
    10. Andrew J. Wiltshire & Gillian Kay & Jemma L. Gornall & Richard A. Betts, 2013. "The Impact of Climate, CO 2 and Population on Regional Food and Water Resources in the 2050s," Sustainability, MDPI, vol. 5(5), pages 1-23, May.
    11. Liu, Min & He, Honglin & Ren, Xiaoli & Sun, Xiaomin & Yu, Guirui & Han, Shijie & Wang, Huimin & Zhou, Guoyi, 2015. "The effects of constraining variables on parameter optimization in carbon and water flux modeling over different forest ecosystems," Ecological Modelling, Elsevier, vol. 303(C), pages 30-41.
    12. de Boer, Joop & Helms, Martine & Aiking, Harry, 2006. "Protein consumption and sustainability: Diet diversity in EU-15," Ecological Economics, Elsevier, vol. 59(3), pages 267-274, September.
    13. Gregory F. Nemet and Adam R. Brandt, 2012. "Willingness to Pay for a Climate Backstop: Liquid Fuel Producers and Direct CO2 Air Capture," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    14. Xiaoshuai Wei & Mingze Xu & Hongxian Zhao & Xinyue Liu & Zifan Guo & Xinhao Li & Tianshan Zha, 2024. "Exploring Sensitivity of Phenology to Seasonal Climate Differences in Temperate Grasslands of China Based on Normalized Difference Vegetation Index," Land, MDPI, vol. 13(3), pages 1-19, March.
    15. Krausmann, Fridolin & Erb, Karl-Heinz & Gingrich, Simone & Lauk, Christian & Haberl, Helmut, 2008. "Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints," Ecological Economics, Elsevier, vol. 65(3), pages 471-487, April.
    16. Yang Fu & Haicheng Zhang & Wenjie Dong & Wenping Yuan, 2014. "Comparison of Phenology Models for Predicting the Onset of Growing Season over the Northern Hemisphere," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-12, October.
    17. Daniel Rainham & Rory Cantwell & Timothy Jason, 2013. "Nature Appropriation and Associations with Population Health in Canada’s Largest Cities," IJERPH, MDPI, vol. 10(4), pages 1-16, March.
    18. Yan, Hao & Wang, Shao-qiang & Billesbach, Dave & Oechel, Walter & Bohrer, Gil & Meyers, Tilden & Martin, Timothy A. & Matamala, Roser & Phillips, Richard P. & Rahman, Faiz & Yu, Qin & Shugart, Herman , 2015. "Improved global simulations of gross primary product based on a new definition of water stress factor and a separate treatment of C3 and C4 plants," Ecological Modelling, Elsevier, vol. 297(C), pages 42-59.
    19. Pelletier, N. & Lammers, P. & Stender, D. & Pirog, R., 2010. "Life cycle assessment of high- and low-profitability commodity and deep-bedded niche swine production systems in the Upper Midwestern United States," Agricultural Systems, Elsevier, vol. 103(9), pages 599-608, November.
    20. Klosterhalfen, A. & Herbst, M. & Weihermüller, L. & Graf, A. & Schmidt, M. & Stadler, A. & Schneider, K. & Subke, J.-A. & Huisman, J.A. & Vereecken, H., 2017. "Multi-site calibration and validation of a net ecosystem carbon exchange model for croplands," Ecological Modelling, Elsevier, vol. 363(C), pages 137-156.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0110407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.