IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i3p427-436.html
   My bibliography  Save this article

Quantifying ecological thresholds from response surfaces

Author

Listed:
  • Lintz, Heather E.
  • McCune, Bruce
  • Gray, Andrew N.
  • McCulloh, Katherine A.

Abstract

Ecological thresholds are abrupt changes of ecological state. While an ecological threshold is a widely accepted concept, most empirical methods detect them in time or across geographic space. Although useful, these approaches do not quantify the direct drivers of threshold response. Causal understanding of thresholds detected empirically requires their investigation in a multi-factor domain containing the direct drivers (often referred to as state space). Here, we present an approach to quantify thresholds from response surfaces modeled empirically in state space. We present two indices of shape attributes measured from response surfaces. The response surfaces are built using a regression method in state space. The indices are threshold strength (T) and diagonality (D). We use 48 simulated response surfaces of different shapes to test the efficacy of the indices in 3D. Our results show that T is sensitive to the steepness of the transition from one state to the next, with various forms of abrupt, centralized thresholds yielding the highest values among the simulated surfaces. D represents the orientation of the response surface or the simultaneous influence of more than one predictor in eliciting the response gradient. Strongly diagonal surfaces have the most diagonal surface area demonstrated by sharply undulating diagonal surfaces. Given that the success of T and D requires a regression method to accurately capture any shape of complex data structure, we also test the accuracy of empirical regression methods known to be tractable with complex data. We test classification and regression trees (CART), Random Forest, and non-parametric multiplicative regression (NPMR) for binary and continuous responses. We use the 48 simulated response surfaces to test the methods, and we find that prediction accuracy depends on both the T and D of the simulated data for each method. We choose the most accurate method among those we test for capturing any shape of response surface from real data, NPMR. Finally, we use NPMR to build response surfaces and quantify T and D from real ecological data sets. We demonstrate how measuring threshold strength and diagonality from multi-factor response surfaces can advance ecology.

Suggested Citation

  • Lintz, Heather E. & McCune, Bruce & Gray, Andrew N. & McCulloh, Katherine A., 2011. "Quantifying ecological thresholds from response surfaces," Ecological Modelling, Elsevier, vol. 222(3), pages 427-436.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:3:p:427-436
    DOI: 10.1016/j.ecolmodel.2010.10.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010005776
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.10.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. M. Jacquez & S. Maruca & M.-J. Fortin, 2000. "From fields to objects: A review of geographic boundary analysis," Journal of Geographical Systems, Springer, vol. 2(3), pages 221-241, September.
    2. Limburg, Karin E. & O'Neill, Robert V. & Costanza, Robert & Farber, Stephen, 2002. "Complex systems and valuation," Ecological Economics, Elsevier, vol. 41(3), pages 409-420, June.
    3. Austin, Mike, 2007. "Species distribution models and ecological theory: A critical assessment and some possible new approaches," Ecological Modelling, Elsevier, vol. 200(1), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    2. Muñoz-Mas, Rafael & Vezza, Paolo & Alcaraz-Hernández, Juan Diego & Martínez-Capel, Francisco, 2016. "Risk of invasion predicted with support vector machines: A case study on northern pike (Esox Lucius, L.) and bleak (Alburnus alburnus, L.)," Ecological Modelling, Elsevier, vol. 342(C), pages 123-134.
    3. Nikodinoska, Natasha & Paletto, Alessandro & Pastorella, Fabio & Granvik, Madeleine & Franzese, Pier Paolo, 2018. "Assessing, valuing and mapping ecosystem services at city level: The case of Uppsala (Sweden)," Ecological Modelling, Elsevier, vol. 368(C), pages 411-424.
    4. Sylvie Ferrari & Sébastien Lavaud & Jean-Christophe Pereau, 2012. "Critical natural capital, ecological resilience and sustainable wetland management: a french case study," Post-Print hal-00799051, HAL.
    5. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    6. Marmion, Mathieu & Luoto, Miska & Heikkinen, Risto K. & Thuiller, Wilfried, 2009. "The performance of state-of-the-art modelling techniques depends on geographical distribution of species," Ecological Modelling, Elsevier, vol. 220(24), pages 3512-3520.
    7. Kaiping Wang & Weiqi Wang & Niyi Zha & Yue Feng & Chenlan Qiu & Yunlu Zhang & Jia Ma & Rui Zhang, 2022. "Spatially Heterogeneity Response of Critical Ecosystem Service Capacity to Address Regional Development Risks to Rapid Urbanization: The Case of Beijing-Tianjin-Hebei Urban Agglomeration in China," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    8. Sellami, Mohamed Habib & Sifaoui, Mohamed Salah, 2008. "Modelling of heat and mass transfer inside a traditional oasis: Experimental validation," Ecological Modelling, Elsevier, vol. 210(1), pages 144-154.
    9. Thangatur Sukumar Hariharan & L. S. Ganesh & Vijayalakshmi Venkatraman & Piyush Sharma & Vidyasagar Potdar, 2022. "Morphological Analysis of general system–environment complexes: Representation and application," Systems Research and Behavioral Science, Wiley Blackwell, vol. 39(2), pages 218-240, March.
    10. Azqueta, Diego & Sotelsek, Daniel, 2007. "Valuing nature: From environmental impacts to natural capital," Ecological Economics, Elsevier, vol. 63(1), pages 22-30, June.
    11. Mateo Cordier & Takuro Uehara & Jeffrey Weih & Bertrand Hamaide, 2017. "An Input-output Economic Model Integrated Within a System Dynamics Ecological Model: Feedback Loop Methodology Applied to Fish Nursery Restoration," Post-Print hal-04166569, HAL.
    12. Di Traglia, Mario & Attorre, Fabio & Francesconi, Fabio & Valenti, Roberto & Vitale, Marcello, 2011. "Is cellular automata algorithm able to predict the future dynamical shifts of tree species in Italy under climate change scenarios? A methodological approach," Ecological Modelling, Elsevier, vol. 222(4), pages 925-934.
    13. Mouton, Ans M. & De Baets, Bernard & Goethals, Peter L.M., 2010. "Ecological relevance of performance criteria for species distribution models," Ecological Modelling, Elsevier, vol. 221(16), pages 1995-2002.
    14. Aertsen, Wim & Kint, Vincent & van Orshoven, Jos & Özkan, Kürşad & Muys, Bart, 2010. "Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests," Ecological Modelling, Elsevier, vol. 221(8), pages 1119-1130.
    15. Tsur, Yacov & Zemel, Amos, 2006. "Welfare measurement under threats of environmental catastrophes," Journal of Environmental Economics and Management, Elsevier, vol. 52(1), pages 421-429, July.
    16. Lyndsie S Wszola & Victoria L Simonsen & Erica F Stuber & Caitlyn R Gillespie & Lindsey N Messinger & Karie L Decker & Jeffrey J Lusk & Christopher F Jorgensen & Andrew A Bishop & Joseph J Fontaine, 2017. "Translating statistical species-habitat models to interactive decision support tools," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
    17. Basille, Mathieu & Calenge, Clément & Marboutin, Éric & Andersen, Reidar & Gaillard, Jean-Michel, 2008. "Assessing habitat selection using multivariate statistics: Some refinements of the ecological-niche factor analysis," Ecological Modelling, Elsevier, vol. 211(1), pages 233-240.
    18. Laetitia H. M. Schmitt & Hilary M. Graham & Piran C. L. White, 2016. "Economic Evaluations of the Health Impacts of Weather-Related Extreme Events: A Scoping Review," IJERPH, MDPI, vol. 13(11), pages 1-19, November.
    19. Rufino, Marta M. & Albouy, Camille & Brind'Amour, Anik, 2021. "Which spatial interpolators I should use? A case study applying to marine species," Ecological Modelling, Elsevier, vol. 449(C).
    20. Mouton, Ans M. & De Baets, Bernard & Van Broekhoven, Ester & Goethals, Peter L.M., 2009. "Prevalence-adjusted optimisation of fuzzy models for species distribution," Ecological Modelling, Elsevier, vol. 220(15), pages 1776-1786.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:3:p:427-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.