IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i2p287-292.html
   My bibliography  Save this article

Ecological risk assessment of pesticide residues in Taihu Lake wetland, China

Author

Listed:
  • Qu, C.S.
  • Chen, W.
  • Bi, J.
  • Huang, L.
  • Li, F.Y.

Abstract

As a major ecosystem type, wetland provides invaluable ecological services. Environmental pollution, especially pesticides pollution should be paid more attention to keep wetlands healthy. Based on the risk quotient method, coupled with a probabilistic risk assessment model, this paper proposed a methodology suitable for ecological risk assessment of pesticide residues for wetland ecosystems. As an important industrializing and ecologically vulnerable area in China, the Taihu Lake wetland was chosen for the case study. The risks of eight pesticides in Taihu Lake wetland were assessed, as single substances and in mixtures. The assessment indicates that risks of the representative species are not significant. In general, the herbicide is found to be more toxic for algae, whereas insecticides pose more risks to zooplankton, insect and fish. For each pesticide in the wetland, the ecological risk it poses is acceptable. But the combined ecological risk posed by mixture can harm more than 10% of species of the wetland ecosystem, mainly dominated by dichlorvos, dimethoate and malathion contributions. These results imply that pesticide residues have been posing pressures on the ecosystem of the Taihu Lake wetland. It is recommended that proper countermeasures should be implemented to reduce the risks.

Suggested Citation

  • Qu, C.S. & Chen, W. & Bi, J. & Huang, L. & Li, F.Y., 2011. "Ecological risk assessment of pesticide residues in Taihu Lake wetland, China," Ecological Modelling, Elsevier, vol. 222(2), pages 287-292.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:2:p:287-292
    DOI: 10.1016/j.ecolmodel.2010.07.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010003698
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.07.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Woodward, Richard T. & Wui, Yong-Suhk, 2001. "The economic value of wetland services: a meta-analysis," Ecological Economics, Elsevier, vol. 37(2), pages 257-270, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zichun Yan & Ninglong You & Lu Wang & Chengwei Lan, 2023. "Assessing the Impact of Road Network on Urban Landscape Ecological Risk Based on Corridor Cutting Degree Model in Fuzhou, China," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    2. Wei Shi & Si Wei & Xin-xin Hu & Guan-jiu Hu & Cu-lan Chen & Xin-ru Wang & John P Giesy & Hong-xia Yu, 2013. "Identification of Thyroid Receptor Ant/Agonists in Water Sources Using Mass Balance Analysis and Monte Carlo Simulation," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-9, October.
    3. Tianlin Zhai & Jing Wang & Ying Fang & Jingjing Liu & Longyang Huang & Kun Chen & Chenchen Zhao, 2021. "Identification and Prediction of Wetland Ecological Risk in Key Cities of the Yangtze River Economic Belt: From the Perspective of Land Development," Sustainability, MDPI, vol. 13(1), pages 1-17, January.
    4. Yuan, Shen & Peng, Shaobing, 2017. "Trends in the economic return on energy use and energy use efficiency in China's crop production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 836-844.
    5. Kun Ma & Liangzhi You & Junguo Liu & Mingxiang Zhang, 2012. "A Hybrid Wetland Map for China: A Synergistic Approach Using Census and Spatially Explicit Datasets," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-8, October.
    6. Zhang, XiaoHong & Pan, HengYu & Cao, Jun & Li, JinRong, 2015. "Energy consumption of China’s crop production system and the related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 111-125.
    7. Yan, Jie & Kong, Zhaoyang & Liu, Yize & Li, Ning & Yang, Xiaolin & Zhuang, Minghao, 2023. "A high-resolution energy use efficiency assessment of China’s staple food crop production and associated improvement potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meixler, Marcia S., 2017. "Assessment of Hurricane Sandy damage and resulting loss in ecosystem services in a coastal-urban setting," Ecosystem Services, Elsevier, vol. 24(C), pages 28-46.
    2. Hermine Vedogbeton & Robert J. Johnston, 2020. "Commodity Consistent Meta-Analysis of Wetland Values: An Illustration for Coastal Marsh Habitat," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 835-865, April.
    3. Lamprinakis, L. & Rodriguez, D. G. P. & Prestvik, A. S. & Veidal, A. & Klimek, B., 2017. "31 DOI: http://dx.doi.org/10.18461/pfsd.2017.1705 INTERNATIONAL JOURNAL ON FOOD SYSTEM DYNAMICS A Mixed Methods Approach Towards Mapping and Economic Valuation of the Divici-Pojejena Wetland Ecosystem," 2018 International European Forum (163rd EAAE Seminar), February 5-9, 2018, Innsbruck-Igls, Austria 276889, International European Forum on System Dynamics and Innovation in Food Networks.
    4. Oltmer, Katrin & Florax, Raymond J.G.M., 2001. "Impacts Of Agricultural Policy Reform On Land Prices: A Quantitative Analysis Of The Literature," 2001 Annual meeting, August 5-8, Chicago, IL 20507, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    5. Patrick Withey & G. Cornelis van Kooten, 2011. "The Effect of Climate Change on Land Use and Wetlands Conservation in Western Canada: An Application of Positive Mathematical Programming," Working Papers 2011-04, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    6. Malte Grossmann & Ottfried Dietrich, 2012. "Integrated Economic-Hydrologic Assessment of Water Management Options for Regulated Wetlands Under Conditions of Climate Change: A Case Study from the Spreewald (Germany)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 2081-2108, May.
    7. Rosenberger, Randall S. & Stanley, Tom D., 2006. "Measurement, generalization, and publication: Sources of error in benefit transfers and their management," Ecological Economics, Elsevier, vol. 60(2), pages 372-378, December.
    8. Rao, Nalini S. & Ghermandi, Andrea & Portela, Rosimeiry & Wang, Xuanwen, 2015. "Global values of coastal ecosystem services: A spatial economic analysis of shoreline protection values," Ecosystem Services, Elsevier, vol. 11(C), pages 95-105.
    9. de Groot, Rudolf & Brander, Luke & van der Ploeg, Sander & Costanza, Robert & Bernard, Florence & Braat, Leon & Christie, Mike & Crossman, Neville & Ghermandi, Andrea & Hein, Lars & Hussain, Salman & , 2012. "Global estimates of the value of ecosystems and their services in monetary units," Ecosystem Services, Elsevier, vol. 1(1), pages 50-61.
    10. Bergstrom, John C. & Taylor, Laura O., 2006. "Using meta-analysis for benefits transfer: Theory and practice," Ecological Economics, Elsevier, vol. 60(2), pages 351-360, December.
    11. Zandersen, Marianne & Tol, Richard S.J., 2009. "A meta-analysis of forest recreation values in Europe," Journal of Forest Economics, Elsevier, vol. 15(1-2), pages 109-130, January.
    12. Aline Chiabai & Ibon Galarraga & Anil Markandya & Unai Pascual, 2013. "The Equivalency Principle for Discounting the Value of Natural Assets: An Application to an Investment Project in the Basque Coast," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(4), pages 535-550, December.
    13. Ando, Amy W. & Getzner, Michael, 2006. "The roles of ownership, ecology, and economics in public wetland-conservation decisions," Ecological Economics, Elsevier, vol. 58(2), pages 287-303, June.
    14. Esteve Mora, F. & Muñoz De Bustillo Llorente, R., 2004. "Mitos y falacias populares en el debate acerca de los sistemas de pensiones/Myths and Fallacies in the Debate About the Future of Pension Systems," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 22, pages 289-316, Agosto.
    15. Chris Dumas & Pete Schuhmann & John C. Whitehead, 2004. "Measuring the Economic Benefits of Water Quality Improvement with the Benefit Transfer Method: An Introduction for Non-Economists," Working Papers 04-12, Department of Economics, Appalachian State University.
    16. Geoffrey N. Kerr & Basil M.H. Sharp, 2008. "Evaluating off-site environmental mitigation using choice modelling ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(4), pages 381-399, December.
    17. Douglas Noonan, 2003. "Contingent Valuation and Cultural Resources: A Meta-Analytic Review of the Literature," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 27(3), pages 159-176, November.
    18. Birol, Ekin & Karousakis, Katia & Koundouri, Phoebe, 2005. "Using A Choice Experiment To Estimate The Non-Use Values Of Wetlands: The Case Of Cheimaditida Wetland In Greece," Environmental Economy and Policy Research Discussion Papers 31934, University of Cambridge, Department of Land Economy.
    19. Maëlle Tripon & Dorothée Boccanfuso & Marie-Eve Yergeau, 2020. "Agriculture urbaine, pratiques agricoles et impacts environnementaux et de santé publique," Cahiers de recherche 20-02, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    20. Rolfe, John & Brouwer, Roy, 2011. "Testing for value stability with a meta-analysis of choice experiments: River health in Australia," Research Reports 107744, Australian National University, Environmental Economics Research Hub.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:2:p:287-292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.