IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i2p268-274.html
   My bibliography  Save this article

Impacts of climate change/variability on the streamflow in the Yellow River Basin, China

Author

Listed:
  • Liu, Qiang
  • Cui, Baoshan

Abstract

Changes of streamflow reflect combined effects of climate, soil and vegetation in the basin scale. This study was conducted to investigate the response of streamflow to the climate changes/variability in different scales of the Yellow River Basin (YRB). The spatial distribution and temporal trends were explored for precipitation and potential evapotranspiration (PE) during 1961–2000 to illustrate climate change/variability and impacts of climate change/variability on streamflow were explained by investigating the relationship of precipitation, PE and streamflow in the YRB. The results presented that: (i) precipitation and PE exhibited different spatial distribution patterns and temporal trends in different regions, and most stations showed negative trends for precipitation in the basin; (ii) the relationship of streamflow with precipitation and PE showed high nonlinearity, and the magnitudes and patterns of streamflow response to precipitation and PE displayed different patterns varied with the dry conditions in different region or years; and (iii) the precipitation elasticity of streamflow (ɛP) was 1.80, 1.08, 1.78 and 1.95 in Lanzhou, Toudaoguai, Huayuankou and Lijin respectively, while the PE elasticity of streamflow (ɛET) was −3.41, −4.40, −4.52 and −4.20 in above four scales, respectively, from which can be seen that streamflow was more sensitive to precipitation in wet region than in arid region and inversely it was more sensitive to PE in arid regions than in wet regions. Furthermore, precipitation elasticity of streamflow calculated from the partial correlation presented a reasonable result to show the combined effect of precipitation and PE on streamflow.

Suggested Citation

  • Liu, Qiang & Cui, Baoshan, 2011. "Impacts of climate change/variability on the streamflow in the Yellow River Basin, China," Ecological Modelling, Elsevier, vol. 222(2), pages 268-274.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:2:p:268-274
    DOI: 10.1016/j.ecolmodel.2009.11.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009008096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.11.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lopez-Urrea, R. & Olalla, F. Martin de Santa & Fabeiro, C. & Moratalla, A., 2006. "An evaluation of two hourly reference evapotranspiration equations for semiarid conditions," Agricultural Water Management, Elsevier, vol. 86(3), pages 277-282, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Yan & Yang, Zhifeng & Liu, Qiang, 2013. "Nonlinear trend in streamflow and its response to climate change under complex ecohydrological patterns in the Yellow River Basin, China," Ecological Modelling, Elsevier, vol. 252(C), pages 220-227.
    2. Solomon Temidayo Owolabi & Kakaba Madi & Ahmed Mukalazi Kalumba, 2021. "Comparative evaluation of spatio-temporal attributes of precipitation and streamflow in Buffalo and Tyume Catchments, Eastern Cape, South Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4236-4251, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yujie & Luo, Yi, 2010. "A consolidated evaluation of the FAO-56 dual crop coefficient approach using the lysimeter data in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(1), pages 31-40, January.
    2. Slavisa Trajkovic & Srdjan Kolakovic, 2009. "Evaluation of Reference Evapotranspiration Equations Under Humid Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 3057-3067, November.
    3. Seydou Traore & Yufeng Luo & Guy Fipps, 2017. "Gene-Expression Programming for Short-Term Forecasting of Daily Reference Evapotranspiration Using Public Weather Forecast Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4891-4908, December.
    4. Seydou Traore & Aytac Guven, 2012. "Regional-Specific Numerical Models of Evapotranspiration Using Gene-Expression Programming Interface in Sahel," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4367-4380, December.
    5. Widmoser, Peter, 2009. "A discussion on and alternative to the Penman-Monteith equation," Agricultural Water Management, Elsevier, vol. 96(4), pages 711-721, April.
    6. Ji, X.B. & Chen, J.M. & Zhao, W.Z. & Kang, E.S. & Jin, B.W. & Xu, S.Q., 2017. "Comparison of hourly and daily Penman-Monteith grass- and alfalfa-reference evapotranspiration equations and crop coefficients for maize under arid climatic conditions," Agricultural Water Management, Elsevier, vol. 192(C), pages 1-11.
    7. Odhiambo, L.O. & Irmak, S., 2012. "Evaluation of the impact of surface residue cover on single and dual crop coefficient for estimating soybean actual evapotranspiration," Agricultural Water Management, Elsevier, vol. 104(C), pages 221-234.
    8. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    9. López-Urrea, R. & Montoro, A. & González-Piqueras, J. & López-Fuster, P. & Fereres, E., 2009. "Water use of spring wheat to raise water productivity," Agricultural Water Management, Elsevier, vol. 96(9), pages 1305-1310, September.
    10. M. Majidi & A. Alizadeh & M. Vazifedoust & A. Farid & T. Ahmadi, 2015. "Analysis of the Effect of Missing Weather Data on Estimating Daily Reference Evapotranspiration Under Different Climatic Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2107-2124, May.
    11. Jiménez-Carvajal, C. & Ruiz-Peñalver, L. & Vera-Repullo, J.A. & Jiménez-Buendía, M. & Antolino-Merino, A. & Molina-Martínez, J.M., 2017. "Weighing lysimetric system for the determination of the water balance during irrigation in potted plants," Agricultural Water Management, Elsevier, vol. 183(C), pages 78-85.
    12. Mohamed A. Mattar & A. A. Alazba & Bander Alblewi & Bahram Gharabaghi & Mohamed A. Yassin, 2016. "Evaluating and Calibrating Reference Evapotranspiration Models Using Water Balance under Hyper-Arid Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3745-3767, September.
    13. Junzeng Xu & Junmei Wang & Qi Wei & Yanhua Wang, 2016. "Symbolic Regression Equations for Calculating Daily Reference Evapotranspiration with the Same Input to Hargreaves-Samani in Arid China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 2055-2073, April.
    14. Yang, Yang & Cui, Yuanlai & Bai, Kaihua & Luo, Tongyuan & Dai, Junfeng & Wang, Weiguang & Luo, Yufeng, 2019. "Short-term forecasting of daily reference evapotranspiration using the reduced-set Penman-Monteith model and public weather forecasts," Agricultural Water Management, Elsevier, vol. 211(C), pages 70-80.
    15. Singh Rawat, Kishan & Kumar Singh, Sudhir & Bala, Anju & Szabó, Szilárd, 2019. "Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 213(C), pages 922-933.
    16. López-Urrea, R. & Montoro, A. & López-Fuster, P. & Fereres, E., 2009. "Evapotranspiration and responses to irrigation of broccoli," Agricultural Water Management, Elsevier, vol. 96(7), pages 1155-1161, July.
    17. López-Urrea, R. & Martín de Santa Olalla, F. & Montoro, A. & López-Fuster, P., 2009. "Single and dual crop coefficients and water requirements for onion (Allium cepa L.) under semiarid conditions," Agricultural Water Management, Elsevier, vol. 96(6), pages 1031-1036, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:2:p:268-274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.