IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i2p232-240.html
   My bibliography  Save this article

Optimizing model for land use/land cover retrieval from remote sensing imagery based on variable precision rough sets

Author

Listed:
  • Xie, Feng
  • Lin, Yi
  • Ren, Wenwei

Abstract

The suitable spectral mode in remote sensing is often desirable to facilitate the inversion of ecological environment and landscape. This paper put forward an optimizing model based on variable precision rough sets (VPRS) for the land cover discrimination in wetland inventory. In the case study of Lake Baiyangdian which has important ecological functions to the northern China, this model is established successfully according to the domain-experts knowledge. The procedure is as follows. First step is data collection, including remote-sensing data (e.g., Landsat-5 TM bands), the digitized relief maps, and statistical yearbooks. Second, the remote sensing imagery (RSI) and relief maps are co-registered into the same resolution. Third, a condition set, including various attributes is derived from spectral bands, band math or ratio indices based on previous studies, at the same time, the decision set is derived from true land types after investigation and validation. Then, the remote sensing decision table (RSDT) is constructed by linking condition set with decision set according to the sequential pixels in RSI. Fourth, we create one forward greedy searching algorithm based on VPRS to handle this RSDT. After adjusting parameters such as β and knowledge granularity diameter (KGD), we obtain the stable optimized results. Comparative experiments and evaluation show that the discrimination or retrieval accuracy of VPRS model is satisfying (overall accuracy: 87.32% and KHAT: 0.84) and better than original data. Moreover, data dimension has been decreased dramatically (from 12 to 3) and key attributes found by the model may be useful for specific retrieval in wetland inventories.

Suggested Citation

  • Xie, Feng & Lin, Yi & Ren, Wenwei, 2011. "Optimizing model for land use/land cover retrieval from remote sensing imagery based on variable precision rough sets," Ecological Modelling, Elsevier, vol. 222(2), pages 232-240.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:2:p:232-240
    DOI: 10.1016/j.ecolmodel.2010.08.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010004060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.08.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Greco, Salvatore & Matarazzo, Benedetto & Slowinski, Roman, 2001. "Rough sets theory for multicriteria decision analysis," European Journal of Operational Research, Elsevier, vol. 129(1), pages 1-47, February.
    2. Beynon, Malcolm, 2001. "Reducts within the variable precision rough sets model: A further investigation," European Journal of Operational Research, Elsevier, vol. 134(3), pages 592-605, November.
    3. Dimitras, A. I. & Slowinski, R. & Susmaga, R. & Zopounidis, C., 1999. "Business failure prediction using rough sets," European Journal of Operational Research, Elsevier, vol. 114(2), pages 263-280, April.
    4. Constantin Zopounidis & Michael Doumpos, 1999. "Business failure prediction using the UTADIS multicriteria analysis method," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(11), pages 1138-1148, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abbas Mardani & Mehrbakhsh Nilashi & Jurgita Antucheviciene & Madjid Tavana & Romualdas Bausys & Othman Ibrahim, 2017. "Recent Fuzzy Generalisations of Rough Sets Theory: A Systematic Review and Methodological Critique of the Literature," Complexity, Hindawi, vol. 2017, pages 1-33, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung-Ho Su, 2017. "A Novel Hybrid Learning Achievement Prediction Model: A Case Study in Gamification Education Applications (APPs)," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(02), pages 515-543, March.
    2. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    3. Shrutika Mishra & A. R. Tripathi, 2021. "AI business model: an integrative business approach," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-21, December.
    4. Haoming Wang & Xiangdong Liu, 2021. "Undersampling bankruptcy prediction: Taiwan bankruptcy data," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-17, July.
    5. Beynon, Malcolm J., 2005. "A novel technique of object ranking and classification under ignorance: An application to the corporate failure risk problem," European Journal of Operational Research, Elsevier, vol. 167(2), pages 493-517, December.
    6. Salvatore Barbagallo & Simona Consoli & Nello Pappalardo & Salvatore Greco & Santo Zimbone, 2006. "Discovering Reservoir Operating Rules by a Rough Set Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(1), pages 19-36, February.
    7. Zopounidis, Constantin & Doumpos, Michael, 2002. "Multicriteria classification and sorting methods: A literature review," European Journal of Operational Research, Elsevier, vol. 138(2), pages 229-246, April.
    8. Salwa Kessioui & Michalis Doumpos & Constantin Zopounidis, 2023. "A Bibliometric Overview of the State-of-the-Art in Bankruptcy Prediction Methods and Applications," World Scientific Book Chapters, in: Emilios Galariotis & Alexandros Garefalakis & Christos Lemonakis & Marios Menexiadis & Constantin Zo (ed.), Governance and Financial Performance Current Trends and Perspectives, chapter 6, pages 123-153, World Scientific Publishing Co. Pte. Ltd..
    9. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    10. Angeliki Papana & Anastasia Spyridou, 2020. "Bankruptcy Prediction: The Case of the Greek Market," Forecasting, MDPI, vol. 2(4), pages 1-21, December.
    11. Apostolos G. Christopoulos & Ioannis G. Dokas & Iraklis Kollias & John Leventides, 2019. "An implementation of Soft Set Theory in the Variables Selection Process for Corporate Failure Prediction Models. Evidence from NASDAQ Listed Firms," Bulletin of Applied Economics, Risk Market Journals, vol. 6(1), pages 1-20.
    12. Thomas E. Mckee, 2000. "Developing a bankruptcy prediction model via rough sets theory," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 9(3), pages 159-173, September.
    13. Sawicki, Piotr & Zak, Jacek, 2009. "Technical diagnostic of a fleet of vehicles using rough set theory," European Journal of Operational Research, Elsevier, vol. 193(3), pages 891-903, March.
    14. Sanchis, A. & Segovia, M.J. & Gil, J.A. & Heras, A. & Vilar, J.L., 2007. "Rough Sets and the role of the monetary policy in financial stability (macroeconomic problem) and the prediction of insolvency in insurance sector (microeconomic problem)," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1554-1573, September.
    15. Jie Sun, 2012. "Integration Of Random Sample Selection, Support Vector Machines And Ensembles For Financial Risk Forecasting With An Empirical Analysis On The Necessity Of Feature Selection," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(4), pages 229-246, October.
    16. Sheikh Rabiul Islam & William Eberle & Sheikh K. Ghafoor & Sid C. Bundy & Douglas A. Talbert & Ambareen Siraj, 2019. "Investigating bankruptcy prediction models in the presence of extreme class imbalance and multiple stages of economy," Papers 1911.09858, arXiv.org.
    17. Fernando Zambrano Farias & María del Carmen Valls Martínez & Pedro Antonio Martín-Cervantes, 2021. "Explanatory Factors of Business Failure: Literature Review and Global Trends," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
    18. Yuyu Liu & Caizhi Sun & Shiguo Xu, 2013. "Eco-Efficiency Assessment of Water Systems in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4927-4939, November.
    19. Nikolaos Daskalakis & Nikolaos Aggelakis & John Filos, 2022. "Applying, Updating and Comparing Bankruptcy Forecasting Models. The Case of Greece," Journal of Accounting and Management Information Systems, Faculty of Accounting and Management Information Systems, The Bucharest University of Economic Studies, vol. 21(3), pages 335-354, September.
    20. Hussein Slim & Sylvie Nadeau, 2020. "A Mixed Rough Sets/Fuzzy Logic Approach for Modelling Systemic Performance Variability with FRAM," Sustainability, MDPI, vol. 12(5), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:2:p:232-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.