IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i16p2939-2944.html
   My bibliography  Save this article

Towards a 3D National Ecological Footprint Geography

Author

Listed:
  • Niccolucci, V.
  • Galli, A.
  • Reed, A.
  • Neri, E.
  • Wackernagel, M.
  • Bastianoni, S.

Abstract

In the last decades several indicators have been proposed to guide decision makers and help manage natural capital. Among such indicators is the Ecological Footprint, a resource accounting tool with a biophysical and thermodynamic basis. In our recent paper (Niccolucci et al., 2009), a three dimensional Ecological Footprint (3DEF) model was proposed to better explain the difference between human demand for natural capital stocks and resource flows. Such 3DEF model has two relevant dimensions: the surface area (or Footprint size – EFsize) and the height (or Footprint depth – EFdepth). EFsize accounts for the human appropriation of the annual income from natural capital while EFdepth accounts for the depletion of stocks of natural capital and/or the accumulation of stocks of wastes. Building on the 2009 Edition of the National Footprint Accounts (NFA), global trends (from 1961 to 2006) for both EFsize and EFdepth were analyzed. EFsize doubled from 1961 to 1986; after 1986 it reached an asymptotic value equal to the Earth's biocapacity (BC) and remained constant. Conversely, EFdepth remained constant at the “natural depth” value until 1986, the year in which global EF first exceeded Earth's BC. A growing trend was observed after that. Trends in each Footprint land type were also analyzed to better appraise the land type under the higher human induced stress. The usefulness of adopting such 3DEF model in the National Footprint Accounts was also discussed. In comparing any nation's demand for ecological assets with its own biocapacity in a given year, four hypothetical cases were identified which could serve as the basis for a new Footprint geography based on both size and depth concepts. This 3DEF model could help distinguish between the use of natural capital flows and the depletion of natural capital stocks while maintaining the structure and advantages of the classical Ecological Footprint formulation.

Suggested Citation

  • Niccolucci, V. & Galli, A. & Reed, A. & Neri, E. & Wackernagel, M. & Bastianoni, S., 2011. "Towards a 3D National Ecological Footprint Geography," Ecological Modelling, Elsevier, vol. 222(16), pages 2939-2944.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:16:p:2939-2944
    DOI: 10.1016/j.ecolmodel.2011.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011002286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wackernagel, Mathis & Rees, William E., 1997. "Perceptual and structural barriers to investing in natural capital: Economics from an ecological footprint perspective," Ecological Economics, Elsevier, vol. 20(1), pages 3-24, January.
    2. Daly, Herman E., 1990. "Toward some operational principles of sustainable development," Ecological Economics, Elsevier, vol. 2(1), pages 1-6, April.
    3. Niccolucci, V. & Bastianoni, S. & Tiezzi, E.B.P. & Wackernagel, M. & Marchettini, N., 2009. "How deep is the footprint? A 3D representation," Ecological Modelling, Elsevier, vol. 220(20), pages 2819-2823.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Yuzhi & Wang, Mengdi & Liu, Qian & Hu, Zhongwen & Zhang, Jie & Shi, Tiezhu & Wu, Guofeng & Su, Fenzhen, 2022. "Ecological carrying capacity and sustainability assessment for coastal zones: A novel framework based on spatial scene and three-dimensional ecological footprint model," Ecological Modelling, Elsevier, vol. 466(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Kai & Heijungs, Reinout & De Snoo, Geert R., 2015. "Understanding the complementary linkages between environmental footprints and planetary boundaries in a footprint–boundary environmental sustainability assessment framework," Ecological Economics, Elsevier, vol. 114(C), pages 218-226.
    2. Jouni Korhonen, 2003. "Should we measure corporate social responsibility?," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 10(1), pages 25-39, March.
    3. Ye-Ning Wang & Qiang Zhou & Hao-Wei Wang, 2020. "Assessing Ecological Carrying Capacity in the Guangdong-Hong Kong-Macao Greater Bay Area Based on a Three-Dimensional Ecological Footprint Model," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    4. Jouni Korhonen, 2008. "Reconsidering the Economics Logic of Ecological Modernization," Environment and Planning A, , vol. 40(6), pages 1331-1346, June.
    5. Yening Wang & Yuantong Jiang & Yuanmao Zheng & Haowei Wang, 2019. "Assessing the Ecological Carrying Capacity Based on Revised Three-Dimensional Ecological Footprint Model in Inner Mongolia, China," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    6. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    7. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    8. Natalie Slawinski & Jonatan Pinkse & Timo Busch & Subhabrata Bobby Banerjeed, 2014. "The role of short-termism and uncertainty in organizational inaction on climate change: multilevel framework," Working Papers hal-00961226, HAL.
    9. Zhigang Li & Jie Yang & Jialong Zhong & Dong Zhang, 2022. "Assessment of Urban Agglomeration Ecological Sustainability and Identification of Influencing Factors: Based on the 3DEF Model and the Random Forest," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    10. Yeray Hernandez & Gustavo Naumann & Serafin Corral & Paulo Barbosa, 2020. "Water Footprint Expands with Gross Domestic Product," Sustainability, MDPI, vol. 12(20), pages 1-6, October.
    11. Rodrigues, João & Domingos, Tiago & Conceição, Pedro & Belbute, José, 2005. "Constraints on dematerialisation and allocation of natural capital along a sustainable growth path," Ecological Economics, Elsevier, vol. 54(4), pages 382-396, September.
    12. Gheorghe Epuran & Bianca Tescașiu & Alina-Simona Tecău & Ioana-Simona Ivasciuc & Adina-Nicoleta Candrea, 2020. "Permaculture and Downshifting-Sources of Sustainable Tourism Development in Rural Areas," Sustainability, MDPI, vol. 13(1), pages 1-19, December.
    13. Toman, Michael & Pezzey, John C., 2002. "The Economics of Sustainability: A Review of Journal Articles," RFF Working Paper Series dp-02-03, Resources for the Future.
    14. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    15. Ling Li & Xingming Li & Hanghang Fan & Jie Lu & Xiuli Wang & Tianlin Zhai, 2024. "Quantifying and Zoning Ecological Compensation for Cultivated Land in Intensive Agricultural Areas: A Case Study in Henan Province, China," Land, MDPI, vol. 13(10), pages 1-21, October.
    16. Toyosi K. Oye & Naren Gupta & Keng Goh & Abdelfateh Kerrouche & Tosin T. Oye, 2021. "Development of a Sustainable Theoretical Framework for a Renewable Based Bathroom Unit," Environmental Management and Sustainable Development, Macrothink Institute, vol. 10(3), pages 10-35, August.
    17. Haiqian Ke & Wenyi Yang & Xiaoyang Liu & Fei Fan, 2020. "Does Innovation Efficiency Suppress the Ecological Footprint? Empirical Evidence from 280 Chinese Cities," IJERPH, MDPI, vol. 17(18), pages 1-23, September.
    18. Alcott, Blake, 2008. "The sufficiency strategy: Would rich-world frugality lower environmental impact," Ecological Economics, Elsevier, vol. 64(4), pages 770-786, February.
    19. Chen, B. & Chen, G.Q., 2007. "Modified ecological footprint accounting and analysis based on embodied exergy--a case study of the Chinese society 1981-2001," Ecological Economics, Elsevier, vol. 61(2-3), pages 355-376, March.
    20. Karen Turner, 2006. "Additional precision provided by region-specific data: The identification of fuel-use and pollution-generation coefficients in the Jersey economy," Regional Studies, Taylor & Francis Journals, vol. 40(4), pages 347-364.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:16:p:2939-2944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.