IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i16p2939-2944.html
   My bibliography  Save this article

Towards a 3D National Ecological Footprint Geography

Author

Listed:
  • Niccolucci, V.
  • Galli, A.
  • Reed, A.
  • Neri, E.
  • Wackernagel, M.
  • Bastianoni, S.

Abstract

In the last decades several indicators have been proposed to guide decision makers and help manage natural capital. Among such indicators is the Ecological Footprint, a resource accounting tool with a biophysical and thermodynamic basis. In our recent paper (Niccolucci et al., 2009), a three dimensional Ecological Footprint (3DEF) model was proposed to better explain the difference between human demand for natural capital stocks and resource flows. Such 3DEF model has two relevant dimensions: the surface area (or Footprint size – EFsize) and the height (or Footprint depth – EFdepth). EFsize accounts for the human appropriation of the annual income from natural capital while EFdepth accounts for the depletion of stocks of natural capital and/or the accumulation of stocks of wastes. Building on the 2009 Edition of the National Footprint Accounts (NFA), global trends (from 1961 to 2006) for both EFsize and EFdepth were analyzed. EFsize doubled from 1961 to 1986; after 1986 it reached an asymptotic value equal to the Earth's biocapacity (BC) and remained constant. Conversely, EFdepth remained constant at the “natural depth” value until 1986, the year in which global EF first exceeded Earth's BC. A growing trend was observed after that. Trends in each Footprint land type were also analyzed to better appraise the land type under the higher human induced stress. The usefulness of adopting such 3DEF model in the National Footprint Accounts was also discussed. In comparing any nation's demand for ecological assets with its own biocapacity in a given year, four hypothetical cases were identified which could serve as the basis for a new Footprint geography based on both size and depth concepts. This 3DEF model could help distinguish between the use of natural capital flows and the depletion of natural capital stocks while maintaining the structure and advantages of the classical Ecological Footprint formulation.

Suggested Citation

  • Niccolucci, V. & Galli, A. & Reed, A. & Neri, E. & Wackernagel, M. & Bastianoni, S., 2011. "Towards a 3D National Ecological Footprint Geography," Ecological Modelling, Elsevier, vol. 222(16), pages 2939-2944.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:16:p:2939-2944
    DOI: 10.1016/j.ecolmodel.2011.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011002286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wackernagel, Mathis & Rees, William E., 1997. "Perceptual and structural barriers to investing in natural capital: Economics from an ecological footprint perspective," Ecological Economics, Elsevier, vol. 20(1), pages 3-24, January.
    2. Daly, Herman E., 1990. "Toward some operational principles of sustainable development," Ecological Economics, Elsevier, vol. 2(1), pages 1-6, April.
    3. Niccolucci, V. & Bastianoni, S. & Tiezzi, E.B.P. & Wackernagel, M. & Marchettini, N., 2009. "How deep is the footprint? A 3D representation," Ecological Modelling, Elsevier, vol. 220(20), pages 2819-2823.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Yuzhi & Wang, Mengdi & Liu, Qian & Hu, Zhongwen & Zhang, Jie & Shi, Tiezhu & Wu, Guofeng & Su, Fenzhen, 2022. "Ecological carrying capacity and sustainability assessment for coastal zones: A novel framework based on spatial scene and three-dimensional ecological footprint model," Ecological Modelling, Elsevier, vol. 466(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Kai & Heijungs, Reinout & De Snoo, Geert R., 2015. "Understanding the complementary linkages between environmental footprints and planetary boundaries in a footprint–boundary environmental sustainability assessment framework," Ecological Economics, Elsevier, vol. 114(C), pages 218-226.
    2. Ye-Ning Wang & Qiang Zhou & Hao-Wei Wang, 2020. "Assessing Ecological Carrying Capacity in the Guangdong-Hong Kong-Macao Greater Bay Area Based on a Three-Dimensional Ecological Footprint Model," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    3. Jouni Korhonen, 2008. "Reconsidering the Economics Logic of Ecological Modernization," Environment and Planning A, , vol. 40(6), pages 1331-1346, June.
    4. Yening Wang & Yuantong Jiang & Yuanmao Zheng & Haowei Wang, 2019. "Assessing the Ecological Carrying Capacity Based on Revised Three-Dimensional Ecological Footprint Model in Inner Mongolia, China," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    5. Jouni Korhonen, 2003. "Should we measure corporate social responsibility?," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 10(1), pages 25-39, March.
    6. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    7. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    8. Gheorghe Epuran & Bianca Tescașiu & Alina-Simona Tecău & Ioana-Simona Ivasciuc & Adina-Nicoleta Candrea, 2020. "Permaculture and Downshifting-Sources of Sustainable Tourism Development in Rural Areas," Sustainability, MDPI, vol. 13(1), pages 1-19, December.
    9. Alcott, Blake, 2008. "The sufficiency strategy: Would rich-world frugality lower environmental impact," Ecological Economics, Elsevier, vol. 64(4), pages 770-786, February.
    10. Karen Turner, 2006. "Additional precision provided by region-specific data: The identification of fuel-use and pollution-generation coefficients in the Jersey economy," Regional Studies, Taylor & Francis Journals, vol. 40(4), pages 347-364.
    11. Florian Fizaine, 2021. "La croissance verte est-elle durable et compatible avec l’économie circulaire ? Une approche par l’identité IPAT," Post-Print hal-03884377, HAL.
    12. Martin C. Whitby & W. Neil Adger, 1997. "Natural And Reproducible Capital And The Sustainability Of Land Use In The Uk: A Reply," Journal of Agricultural Economics, Wiley Blackwell, vol. 48(1‐3), pages 454-458, January.
    13. Korhonen, Jouni & Snakin, Juha-Pekka, 2005. "Analysing the evolution of industrial ecosystems: concepts and application," Ecological Economics, Elsevier, vol. 52(2), pages 169-186, January.
    14. Llanez Anaya, Helmer Fernando & Sacristán Rodríguez, Claudia Patricia, 2021. "Desarrollo territorial y economía solidaria: análisis desde el concepto de desarrollo, el medio ambiente y la incorporación de las comunidades en una estrategia de desarrollo territorial," Revista Tendencias, Universidad de Narino, vol. 22(1), pages 254-278, January.
    15. Suranjan Sinha & Surajit Chakraborty & Shatrajit Goswami, 2017. "Ecological footprint: an indicator of environmental sustainability of a surface coal mine," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 807-824, June.
    16. Frank den Butter, Marjan W. Hofkes, 2001. "Endogenous technology and environmental quality in economic models," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 1(1/2), pages 32-44.
    17. Hua Liu & Dan-Yang Li & Rong Ma & Ming Ma, 2022. "Assessing the Ecological Risks Based on the Three-Dimensional Ecological Footprint Model in Gansu Province," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    18. Hoff, Jens V. & Rasmussen, Martin M.B. & Sørensen, Peter Birch, 2021. "Barriers and opportunities in developing and implementing a Green GDP," Ecological Economics, Elsevier, vol. 181(C).
    19. Doreen Fedrigo-Fazio & Jean-Pierre Schweitzer & Patrick Ten Brink & Leonardo Mazza & Alison Ratliff & Emma Watkins, 2016. "Evidence of Absolute Decoupling from Real World Policy Mixes in Europe," Sustainability, MDPI, vol. 8(6), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:16:p:2939-2944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.