IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i4p545-555.html
   My bibliography  Save this article

Model correlation in stochastic forest simulators—A case of multilevel multivariate model for seedling establishment

Author

Listed:
  • Leskinen, Pekka
  • Miina, Jari
  • Mehtätalo, Lauri
  • Kangas, Annika

Abstract

Forest development can be predicted by the use of forest simulators based on various statistical models describing the forest and its dynamics. One potential approach to study the reliability of the simulators is to utilise Monte Carlo simulation techniques to generate a predictive distribution of a forest characteristic. One problem in examining the effect of model uncertainty in forestry decision making, however, is correlation between the models. If this is not taken into account, predictions of the model systems may become biased, and the effect of errors on decision making may be underestimated. In reality, the models often are interdependent, but the correlations usually are not known because the models have been estimated in separate studies. The aim of this paper is to study the impacts of between-model dependencies on the predictive distribution of forest characteristics by Monte Carlo simulation techniques. We utilise a case of predicting seedling establishment of planted Norway spruce (Picea abies (L.) Karst.) stands as an example with multivariate multilevel model structures. Regardless of low cross-correlations between the models, ignoring them led to significant underestimation of the amount of competing broadleaves to be removed in pre-commercial thinning. Therefore, we recommend that between-model dependencies are clarified and considered in stochastic simulations. In our case, between-model interdependencies can be reliably estimated with a limited dataset. In addition, estimating the models separately and using the model residuals to estimate interdependencies between models were also sufficient to take the between-model dependencies into account when producing stochastic predictions for silvicultural decision making.

Suggested Citation

  • Leskinen, Pekka & Miina, Jari & Mehtätalo, Lauri & Kangas, Annika, 2009. "Model correlation in stochastic forest simulators—A case of multilevel multivariate model for seedling establishment," Ecological Modelling, Elsevier, vol. 220(4), pages 545-555.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:4:p:545-555
    DOI: 10.1016/j.ecolmodel.2008.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438000800536X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2008.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kangas, Annika S. & Kangas, Jyrki & Lahdelma, Risto & Salminen, Pekka, 2006. "Using SMAA-2 method with dependent uncertainties for strategic forest planning," Forest Policy and Economics, Elsevier, vol. 9(2), pages 113-125, November.
    2. Alexander Shapiro & Jos Berge, 2002. "Statistical inference of minimum rank factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 79-94, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anastasiou, Andreas, 2017. "Bounds for the normal approximation of the maximum likelihood estimator from m-dependent random variables," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 171-181.
    2. Denter, Philipp & Sisak, Dana, 2015. "Do polls create momentum in political competition?," Journal of Public Economics, Elsevier, vol. 130(C), pages 1-14.
    3. Salgado Alfredo, 2018. "Incomplete Information and Costly Signaling in College Admissions," Working Papers 2018-23, Banco de México.
    4. Albrecht, James & Anderson, Axel & Vroman, Susan, 2010. "Search by committee," Journal of Economic Theory, Elsevier, vol. 145(4), pages 1386-1407, July.
    5. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    6. Simon Bruhn & Thomas Grebel & Lionel Nesta, 2023. "The fallacy in productivity decomposition," Journal of Evolutionary Economics, Springer, vol. 33(3), pages 797-835, July.
    7. Wim J. van der Linden, 2019. "Lord’s Equity Theorem Revisited," Journal of Educational and Behavioral Statistics, , vol. 44(4), pages 415-430, August.
    8. Simar, Léopold & Wilson, Paul, 2022. "Modern Tools for Evaluating the Performance of Health-Care Providers," LIDAM Discussion Papers ISBA 2022006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Baey, Charlotte & Didier, Anne & Lemaire, Sébastien & Maupas, Fabienne & Cournède, Paul-Henry, 2013. "Modelling the interindividual variability of organogenesis in sugar beet populations using a hierarchical segmented model," Ecological Modelling, Elsevier, vol. 263(C), pages 56-63.
    10. Tasche, Dirk, 2013. "Bayesian estimation of probabilities of default for low default portfolios," Journal of Risk Management in Financial Institutions, Henry Stewart Publications, vol. 6(3), pages 302-326, July.
    11. Diers, Dorothea & Linde, Marc & Hahn, Lukas, 2016. "Addendum to ‘The multi-year non-life insurance risk in the additive reserving model’ [Insurance Math. Econom. 52(3) (2013) 590–598]: Quantification of multi-year non-life insurance risk in chain ladde," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 187-199.
    12. Anastasiou, Andreas, 2017. "Bounds for the normal approximation of the maximum likelihood estimator from m -dependent random variables," LSE Research Online Documents on Economics 83635, London School of Economics and Political Science, LSE Library.
    13. Hirschberg, Joe & Lye, Jenny, 2017. "Inverting the indirect—The ellipse and the boomerang: Visualizing the confidence intervals of the structural coefficient from two-stage least squares," Journal of Econometrics, Elsevier, vol. 199(2), pages 173-183.
    14. Serguei Kaniovski & Alexander Zaigraev, 2018. "The probability of majority inversion in a two-stage voting system with three states," Theory and Decision, Springer, vol. 84(4), pages 525-546, June.
    15. Lahdelma, Risto & Makkonen, Simo & Salminen, Pekka, 2009. "Two ways to handle dependent uncertainties in multi-criteria decision problems," Omega, Elsevier, vol. 37(1), pages 79-92, February.
    16. Packham, Natalie & Woebbeking, Fabian, 2021. "Correlation scenarios and correlation stress testing," IRTG 1792 Discussion Papers 2021-012, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    17. Guillermo Martínez-Flórez & Roger Tovar-Falón & Carlos Barrera-Causil, 2022. "Inflated Unit-Birnbaum-Saunders Distribution," Mathematics, MDPI, vol. 10(4), pages 1-14, February.
    18. Xyngis, Georgios, 2017. "Business-cycle variation in macroeconomic uncertainty and the cross-section of expected returns: Evidence for scale-dependent risks," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 43-65.
    19. Nair, Gopalan M. & Turlach, Berwin A., 2012. "The stochastic h-index," Journal of Informetrics, Elsevier, vol. 6(1), pages 80-87.
    20. Riko Kelter, 2021. "Analysis of type I and II error rates of Bayesian and frequentist parametric and nonparametric two-sample hypothesis tests under preliminary assessment of normality," Computational Statistics, Springer, vol. 36(2), pages 1263-1288, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:4:p:545-555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.