IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i19p2543-2558.html
   My bibliography  Save this article

From meso- to macro-scale dynamic water quality modelling for the assessment of land use change scenarios

Author

Listed:
  • Huang, Shaochun
  • Hesse, Cornelia
  • Krysanova, Valentina
  • Hattermann, Fred

Abstract

The implementation of the European Water Framework Directive requires reliable tools to predict the water quality situations in streams caused by planned land use changes at the scale of large regional river basins. This paper presents the results of modelling the in-stream nitrogen load and concentration within the macro-scale basin of the Saale river (24,167km2) using a semi-distributed process-based ecohydrological dynamic model SWIM (Soil and Water Integrated Model). The simulated load and concentration at the last gauge of the basin show that SWIM is capable to provide a satisfactory result for a large basin. The uncertainty analysis indicates the importance of realistic input data for agricultural management, and that the calibration of parameters can compensate the uncertainty in the input data to a certain extent. A hypothesis about the distributed nutrient retention parameters for macro-scale basins was tested aimed in improvement of the simulation results at the intermediate gauges and the outlet. To verify the hypothesis, the retention parameters were firstly proved to have a reasonable representation of the denitrification conditions in six meso-scale catchments. The area of the Saale region was classified depending on denitrification conditions in soil and groundwater into three classes (poor, neutral and good), and the distributed parameters were applied. However, the hypothesis about the usefulness of distributed retention parameters for macro-scale basins was not confirmed. Since the agricultural management is different in the sub-regions of the Saale basin, land use change scenarios were evaluated for two meso-scale subbasins of the Saale. The scenario results show that the optimal agricultural land use and management are essential for the reduction in nutrient load and improvement of water quality to meet the objectives of the European Water Framework Directive and in view of the regional development plans for future.

Suggested Citation

  • Huang, Shaochun & Hesse, Cornelia & Krysanova, Valentina & Hattermann, Fred, 2009. "From meso- to macro-scale dynamic water quality modelling for the assessment of land use change scenarios," Ecological Modelling, Elsevier, vol. 220(19), pages 2543-2558.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:19:p:2543-2558
    DOI: 10.1016/j.ecolmodel.2009.06.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009004359
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.06.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hesse, Cornelia & Krysanova, Valentina & Päzolt, Jens & Hattermann, Fred F., 2008. "Eco-hydrological modelling in a highly regulated lowland catchment to find measures for improving water quality," Ecological Modelling, Elsevier, vol. 218(1), pages 135-148.
    2. Volk, Martin & Hirschfeld, Jesko & Dehnhardt, Alexandra & Schmidt, Gerd & Bohn, Carsten & Liersch, Stefan & Gassman, Philip W., 2008. "Integrated ecological-economic modelling of water pollution abatement management options in the Upper Ems River Basin," Ecological Economics, Elsevier, vol. 66(1), pages 66-76, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haas, Marcelo B. & Guse, Björn & Pfannerstill, Matthias & Fohrer, Nicola, 2015. "Detection of dominant nitrate processes in ecohydrological modeling with temporal parameter sensitivity analysis," Ecological Modelling, Elsevier, vol. 314(C), pages 62-72.
    2. Hesse, Cornelia & Krysanova, Valentina & Vetter, Tobias & Reinhardt, Julia, 2013. "Comparison of several approaches representing terrestrial and in-stream nutrient retention and decomposition in watershed modelling," Ecological Modelling, Elsevier, vol. 269(C), pages 70-85.
    3. Glavan, Matjaž & Miličić, Vesna & Pintar, Marina, 2013. "Finding options to improve catchment water quality—Lessons learned from historical land use situations in a Mediterranean catchment in Slovenia," Ecological Modelling, Elsevier, vol. 261, pages 58-73.
    4. Li, Yi & Li, Yangfan & Qureshi, Salman & Kappas, Martin & Hubacek, Klaus, 2015. "On the relationship between landscape ecological patterns and water quality across gradient zones of rapid urbanization in coastal China," Ecological Modelling, Elsevier, vol. 318(C), pages 100-108.
    5. Hanane Rhomad & Karima Khalil & Khalid Elkalay, 2023. "Water Quality Modeling in Atlantic Region: Review, Science Mapping and Future Research Directions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 451-499, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esteve, Paloma & Varela-Ortega, Consuelo & Blanco-Gutiérrez, Irene & Downing, Thomas E., 2015. "A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture," Ecological Economics, Elsevier, vol. 120(C), pages 49-58.
    2. Y. Yang & L. Wang, 2010. "A Review of Modelling Tools for Implementation of the EU Water Framework Directive in Handling Diffuse Water Pollution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1819-1843, July.
    3. Panagopoulos, Y. & Makropoulos, C. & Baltas, E. & Mimikou, M., 2011. "SWAT parameterization for the identification of critical diffuse pollution source areas under data limitations," Ecological Modelling, Elsevier, vol. 222(19), pages 3500-3512.
    4. Ferrant, Sylvain & Durand, Patrick & Justes, Eric & Probst, Jean-Luc & Sanchez-Perez, José-Miguel, 2013. "Simulating the long term impact of nitrate mitigation scenarios in a pilot study basin," Agricultural Water Management, Elsevier, vol. 124(C), pages 85-96.
    5. Li, Y.P. & Huang, G.H. & Zhang, N. & Nie, S.L., 2011. "An inexact-stochastic with recourse model for developing regional economic-ecological sustainability under uncertainty," Ecological Modelling, Elsevier, vol. 222(2), pages 370-379.
    6. O’Donoghue, Cathal & Buckley, Cathal & Chyzheuskaya, Aksana & Green, Stuart & Howley, Peter & Hynes, Stephen & Upton, Vincent & Ryan, Mary, 2021. "The spatial impact of rural economic change on river water quality," Land Use Policy, Elsevier, vol. 103(C).
    7. Blanco-Gutierrez, Irene & Varela-Ortega, Consuelo & Purkey, David R., 2011. "Integrated Economic-Hydrologic Analysis Of Policy Responses To Promote Sustainable Water Use Under Changing Climatic Conditions," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114253, European Association of Agricultural Economists.
    8. Hesse, Cornelia & Krysanova, Valentina & Vetter, Tobias & Reinhardt, Julia, 2013. "Comparison of several approaches representing terrestrial and in-stream nutrient retention and decomposition in watershed modelling," Ecological Modelling, Elsevier, vol. 269(C), pages 70-85.
    9. Balana, Bedru Babulo & Vinten, Andy & Slee, Bill, 2011. "A review on cost-effectiveness analysis of agri-environmental measures related to the EU WFD: Key issues, methods, and applications," Ecological Economics, Elsevier, vol. 70(6), pages 1021-1031, April.
    10. Carlo Fezzi & Michael Hutchins & Dan Rigby & Ian J. Bateman & Paulette Posen & David Hadley, 2010. "Integrated assessment of water framework directive nitrate reduction measures," Agricultural Economics, International Association of Agricultural Economists, vol. 41(2), pages 123-134, March.
    11. Kragt, Marit Ellen, 2013. "Integrating biophysical and economic systems in a Bayesian Network Hydro-economic framework," Working Papers 153334, University of Western Australia, School of Agricultural and Resource Economics.
    12. George HALKOS & Georgia GALANI, 2014. "Cost Effectiveness Analysis in Reducing Nutrient Loading in Baltic and Black Seas A Review," Journal of Advanced Research in Management, ASERS Publishing, vol. 5(1), pages 28-51.
    13. Muhammad Waseem & Jannik Schilling & Frauke Kachholz & Jens Tränckner, 2020. "Improved Representation of Flow and Water Quality in a North-Eastern German Lowland Catchment by Combining Low-Frequency Monitored Data with Hydrological Modelling," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    14. Cyril Bourgeois & Pierre-Alain Jayet & Florence Habets & Pascal Viennot, 2018. "Estimating the Marginal Social Value of Agriculturally Driven Nitrate Concentrations in an Aquifer: A Combined Theoretical-Applied Approach," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, January.
    15. O'Donoghue, Cathal & Buckley, Cathal & Chyzheuskaya, Aksana & Grealis, Eoin & Green, Stuart & Howley, Peter & Hynes, Stephen & Upton, Vincent, 2015. "The Spatial Impact of Economic Change on RiverWater Quality 1991-2010," 150th Seminar, October 22-23, 2015, Edinburgh, Scotland 212665, European Association of Agricultural Economists.
    16. Yan, Renhua & Gao, Junfeng, 2021. "Key factors affecting discharge, soil erosion, nitrogen and phosphorus exports from agricultural polder," Ecological Modelling, Elsevier, vol. 452(C).
    17. Hou, Shuhua & Xu, Jiuping & Yao, Liming, 2021. "Integrated environmental policy instruments driven river water pollution management decision system," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    18. Aftab, Ashar & Hanley, Nick & Baiocchi, Giovanni, 2017. "Transferability of Policies to Control Agricultural Nonpoint Pollution in Relatively Similar Catchments," Ecological Economics, Elsevier, vol. 134(C), pages 11-21.
    19. Lenz-Wiedemann, V.I.S. & Klar, C.W. & Schneider, K., 2010. "Development and test of a crop growth model for application within a Global Change decision support system," Ecological Modelling, Elsevier, vol. 221(2), pages 314-329.
    20. Brouwer, Roy & Hofkes, Marjan, 2008. "Integrated hydro-economic modelling: Approaches, key issues and future research directions," Ecological Economics, Elsevier, vol. 66(1), pages 16-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:19:p:2543-2558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.