IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v48y1998i3p377-385.html
   My bibliography  Save this article

Determinateness of strategic games with a potential

Author

Listed:
  • Henk Norde
  • Stef Tijs

Abstract

Finite potential games are determined, i.e have Nash equilibria in pure strategies. In this paper we investigate the determinateness of potential games, in which one or more players have infinitely many pure strategies. Copyright Springer-Verlag Berlin Heidelberg 1998

Suggested Citation

  • Henk Norde & Stef Tijs, 1998. "Determinateness of strategic games with a potential," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(3), pages 377-385, December.
  • Handle: RePEc:spr:mathme:v:48:y:1998:i:3:p:377-385
    DOI: 10.1007/s001860050034
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s001860050034
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s001860050034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Slade, Margaret E, 1994. "What Does an Oligopoly Maximize?," Journal of Industrial Economics, Wiley Blackwell, vol. 42(1), pages 45-61, March.
    2. Lucchetti, R. & Patrone, F. & Tijs, S.H., 1986. "Determinateness of two-person games," Other publications TiSEM 4a235fa8-1864-4937-8b25-5, Tilburg University, School of Economics and Management.
    3. Giovanni Facchini & Freek van Megen & Peter Borm & Stef Tijs, 1997. "Congestion Models And Weighted Bayesian Potential Games," Theory and Decision, Springer, vol. 42(2), pages 193-206, March.
    4. Tijs, S.H., 1981. "Nash equilibria for noncooperative n-person games in normal form," Other publications TiSEM 0af39700-5c65-4f49-bdc3-1, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Voorneveld, M., 1996. "Equilibria and Approximate Equilibria in Infinite Potential Games," Other publications TiSEM ba912d2a-7e99-45f6-b8ae-f, Tilburg University, School of Economics and Management.
    2. Jacques Durieu & Hans Haller & Nicolas Querou & Philippe Solal, 2008. "Ordinal Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 177-194.
    3. Voorneveld, Mark, 1997. "Equilibria and approximate equilibria in infinite potential games," Economics Letters, Elsevier, vol. 56(2), pages 163-169, October.
    4. Fioravante Patrone & Lucia Pusillo & Stef Tijs, 2007. "Multicriteria games and potentials," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 138-145, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Norde, H.W. & Tijs, S.H., 1996. "Determinateness of Strategic Games with a Potential," Other publications TiSEM 5713f5f9-f10f-4612-aa31-7, Tilburg University, School of Economics and Management.
    2. Voorneveld, Mark, 1997. "Equilibria and approximate equilibria in infinite potential games," Economics Letters, Elsevier, vol. 56(2), pages 163-169, October.
    3. Norde, Henk & Patrone, Fioravante & Tijs, Stef, 2000. "Characterizing properties of approximate solutions for optimization problems," Mathematical Social Sciences, Elsevier, vol. 40(3), pages 297-311, November.
    4. Brânzei, R. & Morgan, J. & Scalzo, V. & Tijs, S.H., 2002. "Approximate Fixed Point Theorems in Banach Spaces with Applications in Game Theory," Discussion Paper 2002-17, Tilburg University, Center for Economic Research.
    5. Branzei, Rodica & Mallozzi, Lina & Tijs, Stef, 2003. "Supermodular games and potential games," Journal of Mathematical Economics, Elsevier, vol. 39(1-2), pages 39-49, February.
    6. Philippe Jehiel & Moritz Meyer-ter-Vehn & Benny Moldovanu, 2008. "Ex-post implementation and preference aggregation via potentials," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 37(3), pages 469-490, December.
    7. Mallozzi, L. & Pusillo, L. & Tijs, S.H., 2006. "Approximate Equilibria for Bayesian Multi-Criteria Games," Other publications TiSEM 9ca36884-cabc-418b-a5a5-a, Tilburg University, School of Economics and Management.
    8. Mallozzi, L. & Pusillo, L. & Tijs, S.H., 2006. "Approximate Equilibria for Bayesian Multi-Criteria Games," Discussion Paper 2006-121, Tilburg University, Center for Economic Research.
    9. Satoshi Nakada, 2018. "A Shapley value representation of network potentials," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(4), pages 1151-1157, November.
    10. Abheek Ghosh & Paul W. Goldberg, 2023. "Best-Response Dynamics in Lottery Contests," Papers 2305.10881, arXiv.org.
    11. Christian Ewerhart, 2020. "Ordinal potentials in smooth games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(4), pages 1069-1100, November.
    12. L. Lambertini, 2013. "Coordinating Static and Dynamic Supply Chains with Advertising through Two-Part Tariffs," Working Papers wp874, Dipartimento Scienze Economiche, Universita' di Bologna.
    13. Mark Voorneveld & Peter Borm & Freek Van Megen & Stef Tijs & Giovanni Facchini, 1999. "Congestion Games And Potentials Reconsidered," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 1(03n04), pages 283-299.
    14. Oyama, Daisuke & Tercieux, Olivier, 2009. "Iterated potential and robustness of equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1726-1769, July.
    15. L. Mallozi & S. Tijs & M. Voorneveld, 2000. "Infinite Hierarchical Potential Games," Journal of Optimization Theory and Applications, Springer, vol. 107(2), pages 287-296, November.
    16. Nora, Vladyslav & Uno, Hiroshi, 2014. "Saddle functions and robust sets of equilibria," Journal of Economic Theory, Elsevier, vol. 150(C), pages 866-877.
    17. Milchtaich, Igal, 2009. "Weighted congestion games with separable preferences," Games and Economic Behavior, Elsevier, vol. 67(2), pages 750-757, November.
    18. Didier Laussel & Joana Resende, 2020. "Complementary Monopolies with asymmetric information," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(4), pages 943-981, November.
    19. Olivier Tercieux & Mark Voorneveld, 2010. "The cutting power of preparation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 85-101, February.
    20. Voorneveld, M., 1996. "Equilibria and Approximate Equilibria in Infinite Potential Games," Other publications TiSEM ba912d2a-7e99-45f6-b8ae-f, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:48:y:1998:i:3:p:377-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.