IDEAS home Printed from https://ideas.repec.org/p/tkk/dpaper/dp85.html
   My bibliography  Save this paper

Utilitarian Preferences and Potential Games

Author

Listed:
  • Hannu Salonen

    (Department of Economics, University of Turku, Finland)

Abstract

We study games with utilitarian preferences: the sum of individual utility functions is a generalized ordinal potential for the game. It turns out that generically, any finite game with a potential, ordinal potential, or generalized ordinal potential is better reply equivalent to a game with utilitarian preferences. It follows that generically, finite games with a generalized ordinal potential are better reply equivalent to potential games. For infinite games we show that a continuous game has a continuous ordinal potential, iff there is a better reply equivalent continuous game with utilitarian preferences. For such games we show that best reply improvement paths can be used to approximate equilibria arbitrarily closely.

Suggested Citation

  • Hannu Salonen, 2013. "Utilitarian Preferences and Potential Games," Discussion Papers 85, Aboa Centre for Economics.
  • Handle: RePEc:tkk:dpaper:dp85
    as

    Download full text from publisher

    File URL: http://www.ace-economics.fi/kuvat/dp85.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Voorneveld, M. & Norde, H.W., 1996. "A Characterization of Ordinal Potential Games," Other publications TiSEM a48550d5-29e7-48ec-b9d4-5, Tilburg University, School of Economics and Management.
    2. Salonen, Hannu & Vartiainen, Hannu, 2010. "On the existence of undominated elements of acyclic relations," Mathematical Social Sciences, Elsevier, vol. 60(3), pages 217-221, November.
    3. Voorneveld, Mark, 1997. "Equilibria and approximate equilibria in infinite potential games," Economics Letters, Elsevier, vol. 56(2), pages 163-169, October.
    4. Giovanni Facchini & Freek van Megen & Peter Borm & Stef Tijs, 1997. "Congestion Models And Weighted Bayesian Potential Games," Theory and Decision, Springer, vol. 42(2), pages 193-206, March.
    5. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    6. Voorneveld, Mark & Norde, Henk, 1997. "A Characterization of Ordinal Potential Games," Games and Economic Behavior, Elsevier, vol. 19(2), pages 235-242, May.
    7. Kukushkin, Nikolai S., 2004. "Best response dynamics in finite games with additive aggregation," Games and Economic Behavior, Elsevier, vol. 48(1), pages 94-110, July.
    8. Friedman, James W. & Mezzetti, Claudio, 2001. "Learning in Games by Random Sampling," Journal of Economic Theory, Elsevier, vol. 98(1), pages 55-84, May.
    9. Nikolai Kukushkin, 2011. "Nash equilibrium in compact-continuous games with a potential," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 387-392, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kukushkin, Nikolai S., 2010. "On continuous ordinal potential games," MPRA Paper 20713, University Library of Munich, Germany.
    2. Nikolai Kukushkin, 2011. "Nash equilibrium in compact-continuous games with a potential," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 387-392, May.
    3. Nikolai Kukushkin, 2011. "Acyclicity of improvements in finite game forms," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(1), pages 147-177, February.
    4. Christian Ewerhart, 2020. "Ordinal potentials in smooth games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(4), pages 1069-1100, November.
    5. Jacques Durieu & Hans Haller & Nicolas Querou & Philippe Solal, 2008. "Ordinal Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 177-194.
    6. Kukushkin, Nikolai S., 2015. "Cournot tatonnement and potentials," Journal of Mathematical Economics, Elsevier, vol. 59(C), pages 117-127.
    7. Kukushkin, Nikolai S., 2007. "Best response adaptation under dominance solvability," MPRA Paper 4108, University Library of Munich, Germany.
    8. Nikolai Kukushkin, 2007. "Congestion games revisited," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(1), pages 57-83, September.
    9. Fioravante Patrone & Lucia Pusillo & Stef Tijs, 2007. "Multicriteria games and potentials," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 138-145, July.
    10. Voorneveld, Mark, 1997. "Equilibria and approximate equilibria in infinite potential games," Economics Letters, Elsevier, vol. 56(2), pages 163-169, October.
    11. Mark Voorneveld & Peter Borm & Freek Van Megen & Stef Tijs & Giovanni Facchini, 1999. "Congestion Games And Potentials Reconsidered," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 1(03n04), pages 283-299.
    12. Dubey, Pradeep & Haimanko, Ori & Zapechelnyuk, Andriy, 2006. "Strategic complements and substitutes, and potential games," Games and Economic Behavior, Elsevier, vol. 54(1), pages 77-94, January.
    13. Milchtaich, Igal, 2009. "Weighted congestion games with separable preferences," Games and Economic Behavior, Elsevier, vol. 67(2), pages 750-757, November.
    14. Uno, Hiroshi, 2011. "Strategic complementarities and nested potential games," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 728-732.
    15. Olivier Tercieux & Mark Voorneveld, 2010. "The cutting power of preparation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 85-101, February.
    16. Sung-Ha Hwang & Jonathan Newton, 2017. "Payoff-dependent dynamics and coordination games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 64(3), pages 589-604, October.
    17. Nikolai S. Kukushkin & Pierre von Mouche, 2018. "Cournot tatonnement and Nash equilibrium in binary status games," Economics Bulletin, AccessEcon, vol. 38(2), pages 1038-1044.
    18. Park, Jaeok, 2015. "Potential games with incomplete preferences," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 58-66.
    19. Rene Saran & Roberto Serrano, 2012. "Regret Matching with Finite Memory," Dynamic Games and Applications, Springer, vol. 2(1), pages 160-175, March.
    20. T. Demuynck & A. Schollaert, 2006. "Note on State Dependent Mutations as an Equilibrium Refinement Device," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/408, Ghent University, Faculty of Economics and Business Administration.

    More about this item

    Keywords

    potential games; best reply equivalence; utilitarian preferences;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D43 - Microeconomics - - Market Structure, Pricing, and Design - - - Oligopoly and Other Forms of Market Imperfection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tkk:dpaper:dp85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Susmita Baulia (email available below). General contact details of provider: https://edirc.repec.org/data/tukkkfi.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.