IDEAS home Printed from https://ideas.repec.org/p/tkk/dpaper/dp85.html
   My bibliography  Save this paper

Utilitarian Preferences and Potential Games

Author

Listed:
  • Hannu Salonen

    (Department of Economics, University of Turku, Finland)

Abstract

We study games with utilitarian preferences: the sum of individual utility functions is a generalized ordinal potential for the game. It turns out that generically, any finite game with a potential, ordinal potential, or generalized ordinal potential is better reply equivalent to a game with utilitarian preferences. It follows that generically, finite games with a generalized ordinal potential are better reply equivalent to potential games. For infinite games we show that a continuous game has a continuous ordinal potential, iff there is a better reply equivalent continuous game with utilitarian preferences. For such games we show that best reply improvement paths can be used to approximate equilibria arbitrarily closely.

Suggested Citation

  • Hannu Salonen, 2013. "Utilitarian Preferences and Potential Games," Discussion Papers 85, Aboa Centre for Economics.
  • Handle: RePEc:tkk:dpaper:dp85
    as

    Download full text from publisher

    File URL: http://www.ace-economics.fi/kuvat/dp85.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Voorneveld, M. & Norde, H.W., 1996. "A Characterization of Ordinal Potential Games," Other publications TiSEM a48550d5-29e7-48ec-b9d4-5, Tilburg University, School of Economics and Management.
    2. Salonen, Hannu & Vartiainen, Hannu, 2010. "On the existence of undominated elements of acyclic relations," Mathematical Social Sciences, Elsevier, vol. 60(3), pages 217-221, November.
    3. Giovanni Facchini & Freek van Megen & Peter Borm & Stef Tijs, 1997. "Congestion Models And Weighted Bayesian Potential Games," Theory and Decision, Springer, vol. 42(2), pages 193-206, March.
    4. Voorneveld, Mark, 1997. "Equilibria and approximate equilibria in infinite potential games," Economics Letters, Elsevier, vol. 56(2), pages 163-169, October.
    5. Voorneveld, Mark & Norde, Henk, 1997. "A Characterization of Ordinal Potential Games," Games and Economic Behavior, Elsevier, vol. 19(2), pages 235-242, May.
    6. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    7. Kukushkin, Nikolai S., 2004. "Best response dynamics in finite games with additive aggregation," Games and Economic Behavior, Elsevier, vol. 48(1), pages 94-110, July.
    8. Friedman, James W. & Mezzetti, Claudio, 2001. "Learning in Games by Random Sampling," Journal of Economic Theory, Elsevier, vol. 98(1), pages 55-84, May.
    9. Nikolai Kukushkin, 2011. "Nash equilibrium in compact-continuous games with a potential," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 387-392, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kukushkin, Nikolai S., 2010. "On continuous ordinal potential games," MPRA Paper 20713, University Library of Munich, Germany.
    2. Nikolai Kukushkin, 2011. "Nash equilibrium in compact-continuous games with a potential," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 387-392, May.
    3. Nikolai Kukushkin, 2011. "Acyclicity of improvements in finite game forms," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(1), pages 147-177, February.
    4. Kukushkin, Nikolai S., 2007. "Best response adaptation under dominance solvability," MPRA Paper 4108, University Library of Munich, Germany.
    5. Nikolai Kukushkin, 2007. "Congestion games revisited," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(1), pages 57-83, September.
    6. Jacques Durieu & Hans Haller & Nicolas Querou & Philippe Solal, 2008. "Ordinal Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 177-194.
    7. Fioravante Patrone & Lucia Pusillo & Stef Tijs, 2007. "Multicriteria games and potentials," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 138-145, July.
    8. Kukushkin, Nikolai S., 2015. "Cournot tatonnement and potentials," Journal of Mathematical Economics, Elsevier, vol. 59(C), pages 117-127.
    9. Christian Ewerhart, 2020. "Ordinal potentials in smooth games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(4), pages 1069-1100, November.
    10. Voorneveld, Mark, 1997. "Equilibria and approximate equilibria in infinite potential games," Economics Letters, Elsevier, vol. 56(2), pages 163-169, October.
    11. Milchtaich, Igal, 2009. "Weighted congestion games with separable preferences," Games and Economic Behavior, Elsevier, vol. 67(2), pages 750-757, November.
    12. Sung-Ha Hwang & Jonathan Newton, 2017. "Payoff-dependent dynamics and coordination games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 64(3), pages 589-604, October.
    13. T. Demuynck & A. Schollaert, 2006. "Note on State Dependent Mutations as an Equilibrium Refinement Device," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/408, Ghent University, Faculty of Economics and Business Administration.
    14. Carlos Alós-Ferrer & Nick Netzer, 2015. "Robust stochastic stability," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 31-57, January.
    15. Ratul Lahkar, 2017. "Large Population Aggregative Potential Games," Dynamic Games and Applications, Springer, vol. 7(3), pages 443-467, September.
    16. Kukushkin, Nikolai S., 2018. "Better response dynamics and Nash equilibrium in discontinuous games," Journal of Mathematical Economics, Elsevier, vol. 74(C), pages 68-78.
    17. repec:ebl:ecbull:v:3:y:2002:i:22:p:1-6 is not listed on IDEAS
    18. Kukushkin, Nikolai S., 2014. "Strong equilibrium in games with common and complementary local utilities," MPRA Paper 55499, University Library of Munich, Germany.
    19. Philippe Jehiel & Moritz Meyer-ter-Vehn & Benny Moldovanu, 2008. "Ex-post implementation and preference aggregation via potentials," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 37(3), pages 469-490, December.
    20. Friedman, James W. & Mezzetti, Claudio, 2001. "Learning in Games by Random Sampling," Journal of Economic Theory, Elsevier, vol. 98(1), pages 55-84, May.
    21. repec:ebl:ecbull:v:3:y:2007:i:33:p:1-5 is not listed on IDEAS
    22. Arsen Palestini & Ilaria Poggio, 2015. "A Bayesian potential game to illustrate heterogeneity in cost/benefit characteristics," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 62(1), pages 23-39, March.

    More about this item

    Keywords

    potential games; best reply equivalence; utilitarian preferences;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D43 - Microeconomics - - Market Structure, Pricing, and Design - - - Oligopoly and Other Forms of Market Imperfection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tkk:dpaper:dp85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Susmita Baulia (email available below). General contact details of provider: https://edirc.repec.org/data/tukkkfi.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.