IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v53y1996i2p161-167.html
   My bibliography  Save this article

The bias of the ordinary least squares estimator in simultaneous equation models

Author

Listed:
  • Kiviet, Jan F.
  • Phillips, Garry D. A.

Abstract

No abstract is available for this item.

Suggested Citation

  • Kiviet, Jan F. & Phillips, Garry D. A., 1996. "The bias of the ordinary least squares estimator in simultaneous equation models," Economics Letters, Elsevier, vol. 53(2), pages 161-167, November.
  • Handle: RePEc:eee:ecolet:v:53:y:1996:i:2:p:161-167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1765(96)00908-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fujikoshi, Yasunori & Morimune, Kimio & Kunitomo, Naoto & Taniguchi, Masanobu, 1982. "Asymptotic expansions of the distributions of the estimates of coefficients in a simultaneous equation system," Journal of Econometrics, Elsevier, vol. 18(2), pages 191-205, February.
    2. Kiviet, Jan F. & Phillips, Garry D.A., 1993. "Alternative Bias Approximations in Regressions with a Lagged-Dependent Variable," Econometric Theory, Cambridge University Press, vol. 9(1), pages 62-80, January.
    3. Kadane, Joseph B, 1971. "Comparison of k-Class Estimators when the Disturbances are Small," Econometrica, Econometric Society, vol. 39(5), pages 723-737, September.
    4. Sawa, Takamitsu, 1973. "Almost Unbiased Estimator in Simultaneous Equations Systems," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(1), pages 97-106, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan F. Kiviet, 2013. "Identification and inference in a simultaneous equation under alternative information sets and sampling schemes," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 24-59, February.
    2. Symeonides Spyridon D. & Karavias Yiannis & Tzavalis Elias, 2017. "Size corrected Significance Tests in Seemingly Unrelated Regressions with Autocorrelated Errors," Journal of Time Series Econometrics, De Gruyter, vol. 9(1), pages 1-41, January.
    3. Rault, Christophe, 2000. "Non-causality in VAR-ECM models with purely exogenous long-run paths," Economics Letters, Elsevier, vol. 66(1), pages 7-15, January.
    4. Emma M. Iglesias & Garry D. A. Phillips, 2012. "Almost Unbiased Estimation in Simultaneous Equation Models With Strong and/or Weak Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 505-520, June.
    5. Liu-Evans Gareth D. & Phillips Garry D. A., 2012. "Bootstrap, Jackknife and COLS: Bias and Mean Squared Error in Estimation of Autoregressive Models," Journal of Time Series Econometrics, De Gruyter, vol. 4(2), pages 1-35, November.
    6. Liu-Evans, Gareth, 2014. "A note on approximating moments of least squares estimators," MPRA Paper 57543, University Library of Munich, Germany.
    7. Liu-Evans, Gareth, 2010. "An alternative approach to approximating the moments of least squares estimators," MPRA Paper 26550, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phillips, Garry D.A. & Liu-Evans, Gareth, 2016. "Approximating and reducing bias in 2SLS estimation of dynamic simultaneous equation models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 734-762.
    2. Kiviet, Jan F. & Phillips, Garry D.A., 2012. "Higher-order asymptotic expansions of the least-squares estimation bias in first-order dynamic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3705-3729.
    3. Yong Bao & Aman Ullah, 2021. "Analytical Finite Sample Econometrics: From A. L. Nagar to Now," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 17-37, December.
    4. Yong Bao & Aman Ullah, 2009. "Expectation of Quadratic Forms in Normal and Nonnormal Variables with Econometric Applications," Working Papers 200907, University of California at Riverside, Department of Economics, revised Jun 2009.
    5. Naoto Kunitomo, 1981. "A Third Order Optimum Property of the ML Estimator in Linear Functional Relationships and Simultaneous Equation Systems," Discussion Papers 501, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    6. Liu-Evans, Gareth, 2010. "An alternative approach to approximating the moments of least squares estimators," MPRA Paper 26550, University Library of Munich, Germany.
    7. Ullah, Aman, 2002. "Uses of entropy and divergence measures for evaluating econometric approximations and inference," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 313-326, March.
    8. Naoto Kunitomo, 1981. "On A Third Order Optimum Property of The LIML Estimator When the Sample Size is Large," Discussion Papers 502, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    9. Phillips, Garry David Alan & Wang, Dandan, 2019. "Bias assessment and reduction for the 2SLS estimator in general dynamic simultaneous equations models," DES - Working Papers. Statistics and Econometrics. WS 28322, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Offer Lieberman & Peter C. B. Phillips, 2014. "Norming Rates And Limit Theory For Some Time-Varying Coefficient Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 592-623, November.
    11. Kremers, Jeroen J M & Ericsson, Neil R & Dolado, Juan J, 1992. "The Power of Cointegration Tests," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 325-348, August.
    12. David E. Giles, 2005. "The Bias of Inequality Measures in Very Small Samples: Some Analytic Results," Econometrics Working Papers 0514, Department of Economics, University of Victoria.
    13. Campos, Julia & Ericsson, Neil R. & Hendry, David F., 1996. "Cointegration tests in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 70(1), pages 187-220, January.
    14. Naoto Kunitomo, 1979. "Asymptotic Optimality of the Limited Information Maximum Likelihood Estimator in Large Econometric Models," Discussion Papers 503, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    15. Qian, Chen & Giles, David E., 2007. "The bias of elasticity estimators in linear regression: Some analytic results," Economics Letters, Elsevier, vol. 94(2), pages 185-191, February.
    16. Marcelo Moreira & Geert Ridder, 2019. "Efficiency loss of asymptotically efficient tests in an instrumental variables regression," CeMMAP working papers CWP03/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Andrei Zeleneev & Kirill Evdokimov, 2023. "Simple estimation of semiparametric models with measurement errors," CeMMAP working papers 10/23, Institute for Fiscal Studies.
    18. Kirill S. Evdokimov & Andrei Zeleneev, 2023. "Simple Estimation of Semiparametric Models with Measurement Errors," Papers 2306.14311, arXiv.org, revised Mar 2024.
    19. T. W. Anderson & Naoto Kunitomo & Yukitoshi Matsushita, 2008. "On Finite Sample Properties of Alternative Estimators of Coefficients in a Structural Equation with Many Instruments," CIRJE F-Series CIRJE-F-577, CIRJE, Faculty of Economics, University of Tokyo.
    20. Steve Satchell, 1999. "The Small Noise Arbitrage Pricing Theory," Research Paper Series 4, Quantitative Finance Research Centre, University of Technology, Sydney.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:53:y:1996:i:2:p:161-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.