IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/57543.html
   My bibliography  Save this paper

A note on approximating moments of least squares estimators

Author

Listed:
  • Liu-Evans, Gareth

Abstract

Results are presented for approximating the moments of least squares estimators, particularly those of the OLS estimator, and the methodology is illustrated using a simple dynamic model.

Suggested Citation

  • Liu-Evans, Gareth, 2014. "A note on approximating moments of least squares estimators," MPRA Paper 57543, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:57543
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/57543/1/MPRA_paper_57543.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kiviet, Jan F. & Phillips, Garry D. A., 1996. "The bias of the ordinary least squares estimator in simultaneous equation models," Economics Letters, Elsevier, vol. 53(2), pages 161-167, November.
    2. Kiviet, Jan F. & Phillips, Garry D.A., 2012. "Higher-order asymptotic expansions of the least-squares estimation bias in first-order dynamic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3705-3729.
    3. Bao, Yong, 2007. "The Approximate Moments Of The Least Squares Estimator For The Stationary Autoregressive Model Under A General Error Distribution," Econometric Theory, Cambridge University Press, vol. 23(5), pages 1013-1021, October.
    4. Kiviet, Jan F. & Phillips, Garry D. A., 1994. "Bias assessment and reduction in linear error-correction models," Journal of Econometrics, Elsevier, vol. 63(1), pages 215-243, July.
    5. Kiviet, Jan F. & Phillips, Garry D.A., 2014. "Improved variance estimation of maximum likelihood estimators in stable first-order dynamic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 424-448.
    6. Phillips, Garry D. A., 2000. "An alternative approach to obtaining Nagar-type moment approximations in simultaneous equation models," Journal of Econometrics, Elsevier, vol. 97(2), pages 345-364, August.
    7. Bao, Yong & Ullah, Aman, 2007. "The second-order bias and mean squared error of estimators in time-series models," Journal of Econometrics, Elsevier, vol. 140(2), pages 650-669, October.
    8. Jan F. Kiviet & Garry D. A. Phillips, 2005. "Moment approximation for least-squares estimators in dynamic regression models with a unit root *," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 115-142, July.
    9. Sargan, J D, 1974. "The Validity of Nagar's Expansion for the Moments of Econometric Estimators," Econometrica, Econometric Society, vol. 42(1), pages 169-176, January.
    10. Rilstone, Paul & Srivastava, V. K. & Ullah, Aman, 1996. "The second-order bias and mean squared error of nonlinear estimators," Journal of Econometrics, Elsevier, vol. 75(2), pages 369-395, December.
    11. Ullah, Aman, 2004. "Finite Sample Econometrics," OUP Catalogue, Oxford University Press, number 9780198774488.
    12. Magnus, J.R. & Neudecker, H., 1979. "The commutation matrix : Some properties and applications," Other publications TiSEM d0b1e779-7795-4676-ac98-1, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu-Evans, Gareth, 2010. "An alternative approach to approximating the moments of least squares estimators," MPRA Paper 26550, University Library of Munich, Germany.
    2. Kiviet, Jan F. & Phillips, Garry D.A., 2014. "Improved variance estimation of maximum likelihood estimators in stable first-order dynamic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 424-448.
    3. Kiviet, Jan F. & Phillips, Garry D.A., 2012. "Higher-order asymptotic expansions of the least-squares estimation bias in first-order dynamic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3705-3729.
    4. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    5. Aman Ullah & Yong Bao & Ru Zhang, 2014. "Moment Approximation for Unit Root Models with Nonnormal Errors," Working Papers 201401, University of California at Riverside, Department of Economics.
    6. Symeonides Spyridon D. & Karavias Yiannis & Tzavalis Elias, 2017. "Size corrected Significance Tests in Seemingly Unrelated Regressions with Autocorrelated Errors," Journal of Time Series Econometrics, De Gruyter, vol. 9(1), pages 1-41, January.
    7. Stelios Arvanitis & Antonis Demos, 2015. "A class of indirect inference estimators: higher‐order asymptotics and approximate bias correction," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 200-241, June.
    8. Emma M. Iglesias & Garry D. A. Phillips, 2012. "Almost Unbiased Estimation in Simultaneous Equation Models With Strong and/or Weak Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 505-520, June.
    9. Yong Bao & Aman Ullah, 2021. "Analytical Finite Sample Econometrics: From A. L. Nagar to Now," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 17-37, December.
    10. Phillips, Garry David Alan & Wang, Dandan, 2019. "Bias assessment and reduction for the 2SLS estimator in general dynamic simultaneous equations models," DES - Working Papers. Statistics and Econometrics. WS 28322, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Liu-Evans Gareth D. & Phillips Garry D. A., 2012. "Bootstrap, Jackknife and COLS: Bias and Mean Squared Error in Estimation of Autoregressive Models," Journal of Time Series Econometrics, De Gruyter, vol. 4(2), pages 1-35, November.
    12. Bao, Yong & Ullah, Aman, 2007. "The second-order bias and mean squared error of estimators in time-series models," Journal of Econometrics, Elsevier, vol. 140(2), pages 650-669, October.
    13. Yang, Zhenlin, 2015. "A general method for third-order bias and variance corrections on a nonlinear estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 178-200.
    14. Lee, Tae-Hwy & Ullah, Aman & Wang, He, 2018. "The second-order bias of quantile estimators," Economics Letters, Elsevier, vol. 173(C), pages 143-147.
    15. Kruse, Robinson & Kaufmann, Hendrik & Wegener, Christoph, 2018. "Bias-corrected estimation for speculative bubbles in stock prices," Economic Modelling, Elsevier, vol. 73(C), pages 354-364.
    16. Bao Yong & Zhang Ru, 2013. "Estimation Bias and Feasible Conditional Forecasts from the First-Order Moving Average Model," Journal of Time Series Econometrics, De Gruyter, vol. 6(1), pages 63-80, July.
    17. Phillip, Garry & Xu, Yongdeng, 2016. "Almost Unbiased Variance Estimation in Simultaneous Equation Models," Cardiff Economics Working Papers E2016/10, Cardiff University, Cardiff Business School, Economics Section.
    18. Liu-Evans, Gareth & Phillips, Garry D.A., 2018. "On the use of higher order bias approximations for 2SLS and k-class estimators with non-normal disturbances and many instruments," Econometrics and Statistics, Elsevier, vol. 6(C), pages 90-105.
    19. Gareth Liu-Evans, 2021. "Improving the Estimation and Predictions of Small Time Series Models," Working Papers 202106, University of Liverpool, Department of Economics.
    20. Phillips, Garry D.A. & Liu-Evans, Gareth, 2016. "Approximating and reducing bias in 2SLS estimation of dynamic simultaneous equation models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 734-762.

    More about this item

    Keywords

    asymptotic approximation; bias; least squares; time series; simulteneity;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:57543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.