IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v202y2021ics0165176521001191.html
   My bibliography  Save this article

Systematic risk in pairs trading and dynamic parameterization

Author

Listed:
  • Li, Yiyun
  • Law, Keith K.F.

Abstract

In statistical arbitrage, pairs trading is usually considered a risk-neutral strategy. However, the methodologies in existing literature on choosing thresholds and calibrating cointegration coefficients could be arbitrary and insensitive to market changes. This research discovers that static parameterization in pairs trading could result in undesirable systematic risk and potential losses. We apply Kalman Filter to intertemporally estimate cointegration coefficients and the absolute standardized residual (ASR) threshold, and relate the ADF-threshold with stochastic discount factors. Backtests confirm our superiority in attaining better risk-to-reward ratios and lower systematic risk.

Suggested Citation

  • Li, Yiyun & Law, Keith K.F., 2021. "Systematic risk in pairs trading and dynamic parameterization," Economics Letters, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:ecolet:v:202:y:2021:i:c:s0165176521001191
    DOI: 10.1016/j.econlet.2021.109842
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176521001191
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2021.109842?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Law, K.F. & Li, W.K. & Yu, Philip L.H., 2018. "A single-stage approach for cointegration-based pairs trading," Finance Research Letters, Elsevier, vol. 26(C), pages 177-184.
    2. Christopher Krauss, 2017. "Statistical Arbitrage Pairs Trading Strategies: Review And Outlook," Journal of Economic Surveys, Wiley Blackwell, vol. 31(2), pages 513-545, April.
    3. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    4. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    5. João Frois Caldeira & Gulherme Valle Moura, 2013. "Selection of a Portfolio of Pairs Based on Cointegration: A Statistical Arbitrage Strategy," Brazilian Review of Finance, Brazilian Society of Finance, vol. 11(1), pages 49-80.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Dong & Yingrong Zheng & Na Li, 2023. "Analysis of Systemic Risk Scenarios and Stabilization Effect of Monetary Policy under the COVID-19 Shock and Pharmaceutical Economic Recession," Sustainability, MDPI, vol. 15(1), pages 1-32, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziping Zhao & Rui Zhou & Zhongju Wang & Daniel P. Palomar, 2018. "Optimal Portfolio Design for Statistical Arbitrage in Finance," Papers 1803.02974, arXiv.org.
    2. Law, K.F. & Li, W.K. & Yu, Philip L.H., 2018. "A single-stage approach for cointegration-based pairs trading," Finance Research Letters, Elsevier, vol. 26(C), pages 177-184.
    3. GholamReza Keshavarz Haddad & Hassan Talebi, 2023. "The profitability of pair trading strategy in stock markets: Evidence from Toronto stock exchange," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 193-207, January.
    4. Fernando Caneo & Werner Kristjanpoller, 2021. "Improving statistical arbitrage investment strategy: Evidence from Latin American stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4424-4440, July.
    5. Lin, Tsai-Yu & Chen, Cathy W.S. & Syu, Fong-Yi, 2021. "Multi-asset pair-trading strategy: A statistical learning approach," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    6. Kasper Johansson & Thomas Schmelzer & Stephen Boyd, 2024. "Finding Moving-Band Statistical Arbitrages via Convex-Concave Optimization," Papers 2402.08108, arXiv.org.
    7. Ariel Neufeld & Julian Sester & Daiying Yin, 2022. "Detecting data-driven robust statistical arbitrage strategies with deep neural networks," Papers 2203.03179, arXiv.org, revised Feb 2024.
    8. Tian-Shyr Dai & Yi-Jen Luo & Hao-Han Chang & Chu-Lan Kao & Kuan-Lun Wang & Liang-Chih Liu, 2024. "Asymptotic analyses for trend-stationary pairs trading strategy in high-frequency trading," Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1391-1411, November.
    9. Sabino da Silva, Fernando A.B. & Ziegelmann, Flavio A. & Caldeira, João F., 2023. "A pairs trading strategy based on mixed copulas," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 16-34.
    10. Emmanouil Mavrakis & Christos Alexakis, 2018. "Statistical Arbitrage Strategies under Different Market Conditions: The Case of the Greek Banking Sector," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(2), pages 159-185, August.
    11. Bruno Breyer Caldas & João Frois Caldeira & Guilherme Vale Moura, 2016. "Is Pairs Trading Performance Sensitive To The Methodologies?: A Comparison," Anais do XLII Encontro Nacional de Economia [Proceedings of the 42nd Brazilian Economics Meeting] 130, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    12. Wang, Jai-Jen & Lee, Jin-Ping & Zhao, Yang, 2018. "Pair-trading profitability and short-selling restriction: Evidence from the Taiwan stock market," International Review of Economics & Finance, Elsevier, vol. 55(C), pages 173-184.
    13. Fenghui Yu & Wai-Ki Ching & Chufang Wu & Jia-Wen Gu, 2023. "Optimal Pairs Trading Strategies: A Stochastic Mean–Variance Approach," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 36-55, January.
    14. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    15. Sahar Albosaily & Serguei Pergamenchtchikov, 2021. "Optimal Investment and Consumption for Multidimensional Spread Financial Markets with Logarithmic Utility," Stats, MDPI, vol. 4(4), pages 1-15, November.
    16. Clegg, Matthew & Krauss, Christopher, 2016. "Pairs trading with partial cointegration," FAU Discussion Papers in Economics 05/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    17. Fabian Krause & Jan-Peter Calliess, 2024. "End-to-End Policy Learning of a Statistical Arbitrage Autoencoder Architecture," Papers 2402.08233, arXiv.org.
    18. Marianna Brunetti & Roberta De Luca, 2023. "Pre-selection in cointegration-based pairs trading," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(5), pages 1611-1640, December.
    19. Sánchez-Granero, M.A. & Balladares, K.A. & Ramos-Requena, J.P. & Trinidad-Segovia, J.E., 2020. "Testing the efficient market hypothesis in Latin American stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    20. Sühan Altay & Katia Colaneri & Zehra Eksi, 2018. "Pairs Trading Under Drift Uncertainty And Risk Penalization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-24, November.

    More about this item

    Keywords

    Pairs trading; Systematic risk; Cointegration; Kalman filter; Dynamic threshold;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:202:y:2021:i:c:s0165176521001191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.