IDEAS home Printed from https://ideas.repec.org/a/eee/quaeco/v87y2023icp16-34.html
   My bibliography  Save this article

A pairs trading strategy based on mixed copulas

Author

Listed:
  • Sabino da Silva, Fernando A.B.
  • Ziegelmann, Flavio A.
  • Caldeira, João F.

Abstract

We propose an alternative pairs trading strategy based on computing a mispricing index in a novel way via a mixed copula model, or more specifically via an optimal linear combination of copulas. We evaluate the statistical and economic performances of our proposed approach by analyzing S&P 500 daily stock returns between 1990 and 2015. Empirical results are obtained not only from the full sample analysis but also from subperiods analyses. These subperiods are chosen in two different ways: i) fixed time length; and ii) bull/bear market dependent. Our empirical results suggest that overall the mixed copula strategy has a superior performance than the distance approach in terms of average returns and Sharpe ratio, considering or not the cost transaction. The superiority is more obvious during crisis periods.

Suggested Citation

  • Sabino da Silva, Fernando A.B. & Ziegelmann, Flavio A. & Caldeira, João F., 2023. "A pairs trading strategy based on mixed copulas," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 16-34.
  • Handle: RePEc:eee:quaeco:v:87:y:2023:i:c:p:16-34
    DOI: 10.1016/j.qref.2022.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062976922001223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.qref.2022.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Binh Do & Robert Faff, 2012. "Are Pairs Trading Profits Robust To Trading Costs?," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 35(2), pages 261-287, June.
    2. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-787, October.
    3. Mosoeu, Selebogo & Kodongo, Odongo, 2022. "The Fama-French five-factor model and emerging market equity returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 55-76.
    4. Broussard, John Paul & Vaihekoski, Mika, 2012. "Profitability of pairs trading strategy in an illiquid market with multiple share classes," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(5), pages 1188-1201.
    5. Chen, Joseph & Hong, Harrison & Stein, Jeremy C., 2001. "Forecasting crashes: trading volume, past returns, and conditional skewness in stock prices," Journal of Financial Economics, Elsevier, vol. 61(3), pages 345-381, September.
    6. Breeden, Douglas T., 1979. "An intertemporal asset pricing model with stochastic consumption and investment opportunities," Journal of Financial Economics, Elsevier, vol. 7(3), pages 265-296, September.
    7. Christopher Krauss & Johannes Stübinger, 2017. "Non-linear dependence modelling with bivariate copulas: statistical arbitrage pairs trading on the S&P 100," Applied Economics, Taylor & Francis Journals, vol. 49(52), pages 5352-5369, November.
    8. repec:dau:papers:123456789/2332 is not listed on IDEAS
    9. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    10. Ramos-Requena, J.P. & Trinidad-Segovia, J.E. & Sánchez-Granero, M.A., 2017. "Introducing Hurst exponent in pair trading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 39-45.
    11. Tófoli Paula V. & Ziegelmann Flávio A. & Candido Osvaldo & Valls Pereira Pedro L., 2019. "Dynamic D-Vine Copula Model with Applications to Value-at-Risk (VaR)," Journal of Time Series Econometrics, De Gruyter, vol. 11(2), pages 1-34, July.
    12. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1999. "Multivariate Density Forecast Evaluation And Calibration In Financial Risk Management: High-Frequency Returns On Foreign Exchange," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 661-673, November.
    13. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    14. Hossein Rad & Rand Kwong Yew Low & Robert Faff, 2016. "The profitability of pairs trading strategies: distance, cointegration and copula methods," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1541-1558, October.
    15. Cécile Kharoubi & Thierry Ané, 2003. "Dependance Structure and Risk Measure," Post-Print halshs-00165144, HAL.
    16. Christopher Krauss, 2017. "Statistical Arbitrage Pairs Trading Strategies: Review And Outlook," Journal of Economic Surveys, Wiley Blackwell, vol. 31(2), pages 513-545, April.
    17. Binh Do & Robert Faff, 2010. "Does Simple Pairs Trading Still Work?," Financial Analysts Journal, Taylor & Francis Journals, vol. 66(4), pages 83-95, July.
    18. Focardi, Sergio M. & Fabozzi, Frank J. & Mitov, Ivan K., 2016. "A new approach to statistical arbitrage: Strategies based on dynamic factor models of prices and their performance," Journal of Banking & Finance, Elsevier, vol. 65(C), pages 134-155.
    19. Elena Andreou & Nikitas Pittis & Aris Spanos, 2001. "On Modelling Speculative Prices: The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 15(2), pages 187-220, April.
    20. Tauchen, George, 2001. "Notes on financial econometrics," Journal of Econometrics, Elsevier, vol. 100(1), pages 57-64, January.
    21. Thierry Ane & Cecile Kharoubi, 2003. "Dependence Structure and Risk Measure," The Journal of Business, University of Chicago Press, vol. 76(3), pages 411-438, July.
    22. Tófoli Paula V. & Ziegelmann Flávio A. & Candido Osvaldo & Valls Pereira Pedro L., 2019. "Dynamic D-Vine Copula Model with Applications to Value-at-Risk (VaR)," Journal of Time Series Econometrics, De Gruyter, vol. 11(2), pages 1-34, July.
    23. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    24. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    25. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    26. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    27. João Frois Caldeira & Gulherme Valle Moura, 2013. "Selection of a Portfolio of Pairs Based on Cointegration: A Statistical Arbitrage Strategy," Brazilian Review of Finance, Brazilian Society of Finance, vol. 11(1), pages 49-80.
    28. Osvaldo C. Silva Filho & Flavio A. Ziegelmann & Michael J. Dueker, 2014. "Assessing dependence between financial market indexes using conditional time-varying copulas: applications to Value at Risk (VaR)," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2155-2170, December.
    29. Marco Avellaneda & Jeong-Hyun Lee, 2010. "Statistical arbitrage in the US equities market," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 761-782.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Fuli & Yarahmadi, Ali & Soleymani, Fazlollah, 2024. "Investigation of multivariate pairs trading under copula approach with mixture distribution," Applied Mathematics and Computation, Elsevier, vol. 472(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    2. Stübinger, Johannes & Endres, Sylvia, 2017. "Pairs trading with a mean-reverting jump-diffusion model on high-frequency data," FAU Discussion Papers in Economics 10/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    3. Marianna Brunetti & Roberta De Luca, 2023. "Pre-selection in cointegration-based pairs trading," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(5), pages 1611-1640, December.
    4. Johannes Stübinger & Sylvia Endres, 2018. "Pairs trading with a mean-reverting jump–diffusion model on high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1735-1751, October.
    5. Clegg, Matthew & Krauss, Christopher, 2016. "Pairs trading with partial cointegration," FAU Discussion Papers in Economics 05/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    6. Marianna Brunetti & Roberta De Luca, 2023. "Pairs trading in the index options market," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 13(1), pages 145-173, March.
    7. Matthew Clegg & Christopher Krauss, 2018. "Pairs trading with partial cointegration," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 121-138, January.
    8. Ariel Neufeld & Julian Sester & Daiying Yin, 2022. "Detecting data-driven robust statistical arbitrage strategies with deep neural networks," Papers 2203.03179, arXiv.org, revised Feb 2024.
    9. Stübinger, Johannes, 2018. "Statistical arbitrage with optimal causal paths on high-frequencydata of the S&P 500," FAU Discussion Papers in Economics 01/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    10. Fernando Caneo & Werner Kristjanpoller, 2021. "Improving statistical arbitrage investment strategy: Evidence from Latin American stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4424-4440, July.
    11. Karen Balladares & José Pedro Ramos-Requena & Juan Evangelista Trinidad-Segovia & Miguel Angel Sánchez-Granero, 2021. "Statistical Arbitrage in Emerging Markets: A Global Test of Efficiency," Mathematics, MDPI, vol. 9(2), pages 1-20, January.
    12. Lucas Schneider & Johannes Stübinger, 2020. "Dispersion Trading Based on the Explanatory Power of S&P 500 Stock Returns," Mathematics, MDPI, vol. 8(9), pages 1-22, September.
    13. Bruno Breyer Caldas & João Frois Caldeira & Guilherme Vale Moura, 2016. "Is Pairs Trading Performance Sensitive To The Methodologies?: A Comparison," Anais do XLII Encontro Nacional de Economia [Proceedings of the 42nd Brazilian Economics Meeting] 130, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    14. Kasper Johansson & Thomas Schmelzer & Stephen Boyd, 2024. "Finding Moving-Band Statistical Arbitrages via Convex-Concave Optimization," Papers 2402.08108, arXiv.org.
    15. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    16. Endres, Sylvia & Stübinger, Johannes, 2018. "A flexible regime switching model with pairs trading application to the S&P 500 high-frequency stock returns," FAU Discussion Papers in Economics 07/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    17. Ruenzi, Stefan & Ungeheuer, Michael & Weigert, Florian, 2020. "Joint Extreme events in equity returns and liquidity and their cross-sectional pricing implications," Journal of Banking & Finance, Elsevier, vol. 115(C).
    18. Law, K.F. & Li, W.K. & Yu, Philip L.H., 2018. "A single-stage approach for cointegration-based pairs trading," Finance Research Letters, Elsevier, vol. 26(C), pages 177-184.
    19. Stübinger, Johannes & Walter, Dominik & Knoll, Julian, 2017. "Financial market predictions with Factorization Machines: Trading the opening hour based on overnight social media data," FAU Discussion Papers in Economics 19/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    20. Danni Chen & Jing Cui & Yan Gao & Leilei Wu, 2017. "Pairs trading in Chinese commodity futures markets: an adaptive cointegration approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 57(5), pages 1237-1264, December.

    More about this item

    Keywords

    Pairs trading; Copula; Distance; Quantitative trading strategies; Long-short; Statistical arbitrage; Out-of-sample evaluation;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:quaeco:v:87:y:2023:i:c:p:16-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620167 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.