IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v186y2020ics0165176519302514.html
   My bibliography  Save this article

Crude oil price volatility and short-term predictability of the real U.S. GDP growth rate

Author

Listed:
  • Nonejad, Nima

Abstract

The predictive power contained in crude oil price volatility with regards to forecasting the real U.S. GDP growth rate is evaluated. Contrary to models based on the price of crude oil, specifications employing crude oil price volatility tend to afford statistically significant improvements in terms of population level-predictability and finite-sample forecast accuracy relative to the benchmark at the one-quarter ahead horizon.

Suggested Citation

  • Nonejad, Nima, 2020. "Crude oil price volatility and short-term predictability of the real U.S. GDP growth rate," Economics Letters, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:ecolet:v:186:y:2020:i:c:s0165176519302514
    DOI: 10.1016/j.econlet.2019.108527
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176519302514
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2019.108527?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Ferderer, J., 1996. "Oil price volatility and the macroeconomy," Journal of Macroeconomics, Elsevier, vol. 18(1), pages 1-26.
    2. Kilian, Lutz & Vigfusson, Robert J., 2011. "Nonlinearities In The Oil Price–Output Relationship," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 337-363, November.
    3. Francesco Ravazzolo & Philip Rothman, 2013. "Oil and U.S. GDP: A Real-Time Out-of-Sample Examination," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(2-3), pages 449-463, March.
    4. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507, Elsevier.
    5. Lutz Kilian & Robert J. Vigfusson, 2013. "Do Oil Prices Help Forecast U.S. Real GDP? The Role of Nonlinearities and Asymmetries," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 78-93, January.
    6. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. repec:mcb:jmoncb:v:45:y:2013:i::p:449-463 is not listed on IDEAS
    9. John Elder & Apostolos Serletis, 2010. "Oil Price Uncertainty," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(6), pages 1137-1159, September.
    10. Ravazzolo Francesco & Rothman Philip, 2016. "Oil-price density forecasts of US GDP," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 441-453, September.
    11. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    12. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    13. Lance Bachmeier & Qi Li & Dandan Liu, 2008. "Should Oil Prices Receive So Much Attention? An Evaluation Of The Predictive Power Of Oil Prices For The U.S. Economy," Economic Inquiry, Western Economic Association International, vol. 46(4), pages 528-539, October.
    14. Kiseok Lee & Shawn Ni & Ronald A. Ratti, 1995. "Oil Shocks and the Macroeconomy: The Role of Price Variability," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 39-56.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Jun & Mughal, Nafeesa & Kashif, Maryam & Jain, Vipin & Ramos Meza, Carlos Samuel & Cong, Phan The, 2022. "Volatility in natural resources prices and economic performance: Evidence from BRICS economies," Resources Policy, Elsevier, vol. 75(C).
    2. Xu, Kunliang & Wang, Weiqing, 2023. "Limited information limits accuracy: Whether ensemble empirical mode decomposition improves crude oil spot price prediction?," International Review of Financial Analysis, Elsevier, vol. 87(C).
    3. Cui, Lianbiao & Weng, Shimei & Kirikkaleli, Dervis & Bashir, Muhammad Adnan & Rjoub, Husam & Zhou, Yuanxiang, 2021. "Exploring the role of natural resources, natural gas and oil production for economic growth of China," Resources Policy, Elsevier, vol. 74(C).
    4. Nima Nonejad, 2022. "New Findings Regarding the Out-of-Sample Predictive Impact of the Price of Crude Oil on the United States Industrial Production," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(1), pages 1-35, March.
    5. Cao, Yanyan & Xiang, Shihui, 2023. "Natural resources volatility and causal associations for BRICS countries: Evidence from Covid-19 data," Resources Policy, Elsevier, vol. 80(C).
    6. Cheng, WeiJin & Ming, Kai & Ullah, Mirzat, 2024. "Oil price volatility prediction using out-of-sample analysis – Prediction efficiency of individual models, combination methods, and machine learning based shrinkage methods," Energy, Elsevier, vol. 300(C).
    7. Elder, John, 2021. "Canadian industry level production and energy prices," Energy Economics, Elsevier, vol. 99(C).
    8. Fernandez-Perez, Adrian & Indriawan, Ivan & Tse, Yiuman & Xu, Yahua, 2023. "Cross-asset time-series momentum: Crude oil volatility and global stock markets," Journal of Banking & Finance, Elsevier, vol. 154(C).
    9. Xiao, Jihong & Wang, Yudong, 2022. "Good oil volatility, bad oil volatility, and stock return predictability," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 953-966.
    10. Liu, Fang & Umair, Muhammad & Gao, Junjun, 2023. "Assessing oil price volatility co-movement with stock market volatility through quantile regression approach," Resources Policy, Elsevier, vol. 81(C).
    11. Zhang, Yonggang & Hyder, Mansoor & Baloch, Zulfiqar Ali & Qian, Chong & Berk Saydaliev, Hayot, 2022. "Nexus between oil price volatility and inflation: Mediating nexus from exchange rate," Resources Policy, Elsevier, vol. 79(C).
    12. Xu, Lan & Wu, Yang, 2023. "Nexus between green finance, renewable energy and carbon emission: Empirical evidence from selected Asian economies," Renewable Energy, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    2. Nonejad, Nima, 2020. "Crude oil price volatility and equity return predictability: A comparative out-of-sample study," International Review of Financial Analysis, Elsevier, vol. 71(C).
    3. Nonejad, Nima, 2020. "Crude oil price changes and the United Kingdom real gross domestic product growth rate: An out-of-sample investigation," The Journal of Economic Asymmetries, Elsevier, vol. 21(C).
    4. Nima Nonejad, 2022. "New Findings Regarding the Out-of-Sample Predictive Impact of the Price of Crude Oil on the United States Industrial Production," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(1), pages 1-35, March.
    5. Nonejad, Nima, 2021. "The price of crude oil and (conditional) out-of-sample predictability of world industrial production," Journal of Commodity Markets, Elsevier, vol. 23(C).
    6. Nima Nonejad, 2021. "Should crude oil price volatility receive more attention than the price of crude oil? An empirical investigation via a large‐scale out‐of‐sample forecast evaluation of US macroeconomic data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 769-791, August.
    7. Nonejad, Nima, 2022. "Understanding the conditional out-of-sample predictive impact of the price of crude oil on aggregate equity return volatility," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    8. Joëts, Marc & Mignon, Valérie & Razafindrabe, Tovonony, 2017. "Does the volatility of commodity prices reflect macroeconomic uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 313-326.
    9. Nima Nonejad, 2021. "Crude oil price point forecasts of the Norwegian GDP growth rate," Empirical Economics, Springer, vol. 61(5), pages 2913-2930, November.
    10. Nonejad, Nima, 2019. "Forecasting aggregate equity return volatility using crude oil price volatility: The role of nonlinearities and asymmetries," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    11. Pan, Zhiyuan & Wang, Qing & Wang, Yudong & Yang, Li, 2018. "Forecasting U.S. real GDP using oil prices: A time-varying parameter MIDAS model," Energy Economics, Elsevier, vol. 72(C), pages 177-187.
    12. Liu, Li & Ma, Feng & Wang, Yudong, 2015. "Forecasting excess stock returns with crude oil market data," Energy Economics, Elsevier, vol. 48(C), pages 316-324.
    13. Maheu, John M. & Song, Yong & Yang, Qiao, 2020. "Oil price shocks and economic growth: The volatility link," International Journal of Forecasting, Elsevier, vol. 36(2), pages 570-587.
    14. Ravazzolo Francesco & Rothman Philip, 2016. "Oil-price density forecasts of US GDP," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 441-453, September.
    15. Akdoğan, Kurmaş, 2020. "Fundamentals versus speculation in oil market: The role of asymmetries in price adjustment?," Resources Policy, Elsevier, vol. 67(C).
    16. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507, Elsevier.
    17. Degiannakis, Stavros & Filis, George, 2023. "Oil price assumptions for macroeconomic policy," Energy Economics, Elsevier, vol. 117(C).
    18. Nonejad, Nima, 2020. "A comprehensive empirical analysis of the predictive impact of the price of crude oil on aggregate equity return volatility," Journal of Commodity Markets, Elsevier, vol. 20(C).
    19. Herrera, Ana María & Karaki, Mohamad B. & Rangaraju, Sandeep Kumar, 2019. "Oil price shocks and U.S. economic activity," Energy Policy, Elsevier, vol. 129(C), pages 89-99.
    20. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.

    More about this item

    Keywords

    Crude oil; Forecast evaluation; GDP growth rate; Realized volatility;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:186:y:2020:i:c:s0165176519302514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.