IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v227y2025ics0921800924002568.html
   My bibliography  Save this article

Biological control of a parasite: The efficacy of cleaner fish in salmon farming

Author

Listed:
  • Pincinato, Ruth Beatriz Mezzalira
  • Oglend, Atle
  • Smith, Martin D.
  • Asche, Frank

Abstract

Managing pathogens is a challenge in biological production processes. To manage private risks and reduce externalities, biological controls leverage the technology of natural ecosystems and are often considered environmentally friendly alternatives to chemical controls. In salmon farming, parasitic sea lice reduce own-firm profitability by stressing fish and slowing growth and generate externalities by spreading to neighboring farms and threatening wild fish populations. Cleaner fish are a form of biological control based on ecological interaction that can be used instead of chemical control of sea lice, but little is known about their efficacy and value in commercial use. We estimate efficacy of cleaner fish using facility-level data. To identify exogenous variation in cleaner fish usage, we instrument site-level cleaner fish stocks using distance to cleaner fish farm with a commercial license. Cleaner fish use significantly reduces likelihood of sea lice levels exceeding regulatory threshold levels. Combining efficacy estimates with cost data and a structural model, we provide estimates of cost-effectiveness. Our results show that cleaner fish are privately cost-effective, which is consistent with high levels of adoption. However, cost-effectiveness also suggests that policy could encourage even more adoption of biological controls to reduce externalities.

Suggested Citation

  • Pincinato, Ruth Beatriz Mezzalira & Oglend, Atle & Smith, Martin D. & Asche, Frank, 2025. "Biological control of a parasite: The efficacy of cleaner fish in salmon farming," Ecological Economics, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:ecolec:v:227:y:2025:i:c:s0921800924002568
    DOI: 10.1016/j.ecolecon.2024.108359
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800924002568
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2024.108359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atle Oglend & Vesa-Heikki Soini, 2020. "Implications of Entry Restrictions to Address Externalities in Aquaculture: The Case of Salmon Aquaculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(4), pages 673-694, December.
    2. Melanie Blackwell & Pagoulatos Angelos, 1992. "The Econometrics of Damage Control," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 74(4), pages 1040-1044.
    3. Jardine, Sunny L. & Sanchirico, James N., 2018. "Estimating the cost of invasive species control," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 242-257.
    4. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    5. Cheryl Brown & Lori Lynch & David Zilberman, 2002. "The Economics of Controlling Insect-Transmitted Plant Diseases," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(2), pages 279-291.
    6. Kling, David M. & Sanchirico, James N. & Fackler, Paul L., 2017. "Optimal monitoring and control under state uncertainty: Application to lionfish management," Journal of Environmental Economics and Management, Elsevier, vol. 84(C), pages 223-245.
    7. Jay Abolofia & Frank Asche & James E. Wilen, 2017. "The Cost of Lice: Quantifying the Impacts of Parasitic Sea Lice on Farmed Salmon," Marine Resource Economics, University of Chicago Press, vol. 32(3), pages 329-349.
    8. Ben Belton & David C. Little & Wenbo Zhang & Peter Edwards & Michael Skladany & Shakuntala H. Thilsted, 2020. "Farming fish in the sea will not nourish the world," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    9. Lovell, Sabrina J. & Stone, Susan F. & Fernandez, Linda, 2006. "The Economic Impacts of Aquatic Invasive Species: A Review of the Literature," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 35(01), pages 1-14, April.
    10. Alain Carpentier & Robert D. Weaver, 1997. "Damage Control Productivity: Why Econometrics Matters," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(1), pages 47-61.
    11. Markus Frölich, 2008. "Parametric and Nonparametric Regression in the Presence of Endogenous Control Variables," International Statistical Review, International Statistical Institute, vol. 76(2), pages 214-227, August.
    12. Asche, Frank & Bellemare, Marc F. & Roheim, Cathy & Smith, Martin D. & Tveteras, Sigbjørn, 2015. "Fair Enough? Food Security and the International Trade of Seafood," World Development, Elsevier, vol. 67(C), pages 151-160.
    13. Olson, Lars J., 2006. "The Economics of Terrestrial Invasive Species: A Review of the Literature," Agricultural and Resource Economics Review, Cambridge University Press, vol. 35(1), pages 178-194, April.
    14. Valente, Carlos & Gonçalves, Catarina I. & Monteiro, Fernanda & Gaspar, João & Silva, Margarida & Sottomayor, Miguel & Paiva, Maria Rosa & Branco, Manuela, 2018. "Economic Outcome of Classical Biological Control: A Case Study on the Eucalyptus Snout Beetle, Gonipterus platensis, and the Parasitoid Anaphes nitens," Ecological Economics, Elsevier, vol. 149(C), pages 40-47.
    15. Marten, Alex L. & Moore, Christopher C., 2011. "An options based bioeconomic model for biological and chemical control of invasive species," Ecological Economics, Elsevier, vol. 70(11), pages 2050-2061, September.
    16. Fenichel, Eli P. & Horan, Richard D. & Bence, James R., 2010. "Indirect management of invasive species through bio-controls: A bioeconomic model of salmon and alewife in Lake Michigan," Resource and Energy Economics, Elsevier, vol. 32(4), pages 500-518, November.
    17. Md. Akhtarul Alam & Atle G. Guttormsen & Kristin H. Roll, 2019. "Production Risk and Technical Efficiency of Tilapia Aquaculture in Bangladesh," Marine Resource Economics, University of Chicago Press, vol. 34(2), pages 123-141.
    18. Lars J. Olson & Santanu Roy, 2002. "The Economics of Controlling a Stochastic Biological Invasion," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(5), pages 1311-1316.
    19. Erik Lichtenberg & David Zilberman, 1986. "The Econometrics of Damage Control: Why Specification Matters," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(2), pages 261-273.
    20. Tess Petesch & Bradford Dubik & Martin D. Smith, 2021. "Implications of Disease in Shrimp Aquaculture for Wild-Caught Shrimp," Marine Resource Economics, University of Chicago Press, vol. 36(2), pages 191-209.
    21. Frank Asche & Håkan Eggert & Atle Oglend & Cathy A. Roheim & Martin D. Smith, 2022. "Aquaculture: Externalities and Policy Options," Review of Environmental Economics and Policy, University of Chicago Press, vol. 16(2), pages 282-305.
    22. Jean-Daniel M. Saphores, 2000. "The Economic Threshold with a Stochastic Pest Population: A Real Options Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(3), pages 541-555.
    23. Epanchin-Niell, Rebecca S. & Wilen, James E., 2012. "Optimal spatial control of biological invasions," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 260-270.
    24. Lovell, Sabrina J. & Stone, Susan F. & Fernandez, Linda, 2006. "The Economic Impacts of Aquatic Invasive Species: A Review of the Literature," Agricultural and Resource Economics Review, Cambridge University Press, vol. 35(1), pages 195-208, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haden Chomphosy, William & Manning, Dale T. & Shwiff, Stephanie & Weiler, Stephan, 2023. "Optimal R&D investment in the management of invasive species," Ecological Economics, Elsevier, vol. 211(C).
    2. Olson, Lars J., 2006. "The Economics of Terrestrial Invasive Species: A Review of the Literature," Agricultural and Resource Economics Review, Cambridge University Press, vol. 35(1), pages 178-194, April.
    3. Eli Fenichel & Timothy Richards & David Shanafelt, 2014. "The Control of Invasive Species on Private Property with Neighbor-to-Neighbor Spillovers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(2), pages 231-255, October.
    4. Xiaoxue Du & Levan Elbakidze & Liang Lu & R. Garth Taylor, 2022. "Climate Smart Pest Management," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    5. Haight, Robert G. & Polasky, Stephen, 2010. "Optimal control of an invasive species with imperfect information about the level of infestation," Resource and Energy Economics, Elsevier, vol. 32(4), pages 519-533, November.
    6. Charles Sims & David Finnoff & Jason F. Shogren, 2018. "Taking One for the Team: Is Collective Action More Responsive to Ecological Change?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(3), pages 589-615, July.
    7. Grogan, Kelly A. & Chakravarty, Shourish, 2017. "The Feasibility of Area-wide Pest Management under Heterogeneity and Uncertainty: The Case of Citrus Health Management Areas," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259188, Agricultural and Applied Economics Association.
    8. Marten, Alex L. & Moore, Christopher C., 2011. "An options based bioeconomic model for biological and chemical control of invasive species," Ecological Economics, Elsevier, vol. 70(11), pages 2050-2061, September.
    9. Dirksmeyer, W., 2008. "Ist eine Reduzierung des Pflanzenschutzmitteleinsatzes im Freilandgemüsebau möglich? Ergebnisse eines bioökonomischen Simulationsmodells," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 43, March.
    10. Sims, Charles & Finnoff, David, 2013. "When is a “wait and see” approach to invasive species justified?," Resource and Energy Economics, Elsevier, vol. 35(3), pages 235-255.
    11. Mitchell, Paul D., 2001. "Additive Versus Proportional Pest Damage Functions: Why Ecology Matters," 2001 Annual meeting, August 5-8, Chicago, IL 20775, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    12. Onal, Sevilay & Akhundov, Najmaddin & Büyüktahtakın, İ. Esra & Smith, Jennifer & Houseman, Gregory R., 2020. "An integrated simulation-optimization framework to optimize search and treatment path for controlling a biological invader," International Journal of Production Economics, Elsevier, vol. 222(C).
    13. Dirksmeyer, Walter, 2007. "Ist Eine Reduzierung Des Pflanzenschutzmitteleinsatzes Im Freilandgemüsebau Möglich? Ergebnisse Eines Bioökonomischen Simulationsmodells," 47th Annual Conference, Weihenstephan, Germany, September 26-28, 2007 7592, German Association of Agricultural Economists (GEWISOLA).
    14. Liu, Yanxu & Sims, Charles, 2016. "Spatial-dynamic externalities and coordination in invasive species control," Resource and Energy Economics, Elsevier, vol. 44(C), pages 23-38.
    15. Warziniack, Travis W. & Finnoff, David & Shogren, Jason F., 2013. "Public economics of hitchhiking species and tourism-based risk to ecosystem services," Resource and Energy Economics, Elsevier, vol. 35(3), pages 277-294.
    16. David Simpson, 2008. "Preventing Biological Invasions: Doing Something vs. Doing Nothing," NCEE Working Paper Series 200811, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Nov 2008.
    17. Jardine, Sunny L. & Sanchirico, James N., 2018. "Estimating the cost of invasive species control," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 242-257.
    18. Yun, Seong Do & Gramig, Benjamin M., 2014. "Dynamic Optimization of Ecosystem Services: A Comparative Analysis of Non-Spatial and Spatially-Explicit Models," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170450, Agricultural and Applied Economics Association.
    19. Lu, Liang & Elbakidze, Levan, 2012. "Application of Comparative Dynamics in Stochastic Invasive Species Management in Agricultural Production," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 125226, Agricultural and Applied Economics Association.
    20. Costello, Christopher & Quérou, Nicolas & Tomini, Agnes, 2017. "Private eradication of mobile public bads," European Economic Review, Elsevier, vol. 94(C), pages 23-44.

    More about this item

    Keywords

    Aquaculture; Bioinvasion; Disease management; Prevention versus cure; Sea lice;
    All these keywords.

    JEL classification:

    • Q22 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Fishery
    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:227:y:2025:i:c:s0921800924002568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.