IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v205y2023ics092180092200386x.html
   My bibliography  Save this article

Modelling the embodied carbon cost of UK domestic building construction: Today to 2050

Author

Listed:
  • Drewniok, Michał P.
  • Dunant, Cyrille F.
  • Allwood, Julian M.
  • Ibell, Tim
  • Hawkins, Will

Abstract

The construction of new domestic properties contributes 2% of UK territorial greenhouse gas (GHG) emissions. The UK government aims to increase construction of new homes in England by almost a third, to 300,000 per year by the mid-2020s, whilst simultaneously reducing emissions in line with its net zero 2050 commitment. In this paper, for the first time, the upfront embodied carbon cost of constructing domestic properties in the UK by 2050 is quantified. A bottom-up analysis modelling seven domestic building typologies was used, with the material use for each based on current UK practice. Possible interventions to reduce the embodied carbon cost are then analysed. The results show that maintaining today’s levels of construction will use the remaining 2050 carbon budget apportioned to house building (160 MtCO2e) by 2036, and cause a substantial increase in domestic floor area per capita. However, construction could reduce and cease entirely by 2035 without reducing today’s living floor area per capita (37.5 m2), resulting in a substantially reduced cumulative embodied carbon of 88 MtCO2e by 2050. Increasing living floor area per capita to the EU average of 40.5 m2, can be achieved within the carbon budget and with zero emissions by 2050. In contrast, increasing house building to government targets will result in double the cumulative emissions than the budget allows.

Suggested Citation

  • Drewniok, Michał P. & Dunant, Cyrille F. & Allwood, Julian M. & Ibell, Tim & Hawkins, Will, 2023. "Modelling the embodied carbon cost of UK domestic building construction: Today to 2050," Ecological Economics, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:ecolec:v:205:y:2023:i:c:s092180092200386x
    DOI: 10.1016/j.ecolecon.2022.107725
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092180092200386X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2022.107725?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shufan Zhang & Minda Ma & Nan Zhou & Jinyue Yan & Wei Feng & Ran Yan & Kairui You & Jingjing Zhang & Jing Ke, 2024. "Estimation of Global Building Stocks by 2070: Unlocking Renovation Potential," Papers 2406.04074, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:205:y:2023:i:c:s092180092200386x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.