IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v112y2015icp78-85.html
   My bibliography  Save this article

Watering the farm: Comparing organic and conventional irrigation water use in the Murray–Darling Basin, Australia

Author

Listed:
  • Wheeler, Sarah Ann
  • Zuo, Alec
  • Loch, Adam

Abstract

This study investigates the role that certified-organic farming systems play in irrigation water-use in the Murray–Darling Basin, where large-scale government policy has focussed on returning water from irrigation to key ecological sites. Information from Australia's agricultural census in 2011, as well as a specialized irrigation farm survey sample of 1499 observations, compared certified-organic and conventional irrigation water-use. Census and survey results found some evidence for some industries that organic irrigation farms are less water-use efficient (i.e. water use divided by tonne of output), but little significant difference in water-used per irrigated hectare was found overall (although for some industry sectors—notably horticulture—organic farms use less water on a per-hectare basis). After controlling for self-selection, regression model results also indicated that organic irrigation farms use less absolute water than conventional farms; use a smaller percentage of water received; and are more water-use productive (i.e. water use divided by net farm income). A lack of significance for the importance of irrigation infrastructure adoption, plus the importance of water-use charges in reducing water demand, suggests a need for governments to reorientate irrigation policy towards more multi-layered and inclusive practices that promote better soil conditions and water management, rather than focussing on providing subsidies for technology adoption.

Suggested Citation

  • Wheeler, Sarah Ann & Zuo, Alec & Loch, Adam, 2015. "Watering the farm: Comparing organic and conventional irrigation water use in the Murray–Darling Basin, Australia," Ecological Economics, Elsevier, vol. 112(C), pages 78-85.
  • Handle: RePEc:eee:ecolec:v:112:y:2015:i:c:p:78-85
    DOI: 10.1016/j.ecolecon.2015.02.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092180091500066X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2015.02.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Connor, Jeffery D. & Schwabe, Kurt & King, Darran & Knapp, Keith, 2012. "Irrigated agriculture and climate change: The influence of water supply variability and salinity on adaptation," Ecological Economics, Elsevier, vol. 77(C), pages 149-157.
    2. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    3. Nemecek, Thomas & Dubois, David & Huguenin-Elie, Olivier & Gaillard, Gérard, 2011. "Life cycle assessment of Swiss farming systems: I. Integrated and organic farming," Agricultural Systems, Elsevier, vol. 104(3), pages 217-232, March.
    4. Quiggin, John C., 2001. "Environmental economics and the Murray-Darling river system," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 45(1), pages 1-28.
    5. Offermann, Frank & Nieberg, Hiltrud & Zander, Katrin, 2009. "Dependency of organic farms on direct payments in selected EU member states: Today and tomorrow," Food Policy, Elsevier, vol. 34(3), pages 273-279, June.
    6. Perry, Chris, 2011. "Accounting for water use: Terminology and implications for saving water and increasing production," Agricultural Water Management, Elsevier, vol. 98(12), pages 1840-1846, October.
    7. Crase, Lin & O'Keefe, Sue & Dollery, Brian, 2013. "Talk is cheap, or is it? The cost of consulting about uncertain reallocation of water in the Murray–Darling Basin, Australia," Ecological Economics, Elsevier, vol. 88(C), pages 206-213.
    8. Wheeler, Sarah Ann & Zuo, Alec & Bjornlund, Henning, 2014. "Investigating the delayed on-farm consequences of selling water entitlements in the Murray-Darling Basin," Agricultural Water Management, Elsevier, vol. 145(C), pages 72-82.
    9. Wood, Richard & Lenzen, Manfred & Dey, Christopher & Lundie, Sven, 2006. "A comparative study of some environmental impacts of conventional and organic farming in Australia," Agricultural Systems, Elsevier, vol. 89(2-3), pages 324-348, September.
    10. Wittwer, Glyn & Dixon, Janine, 2013. "Effective use of public funding in the Murray-Darling Basin: a comparison of buybacks and infrastructure upgrades," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(3).
    11. Mosley, L.M. & Fleming, N., 2009. "Reductions in water use following rehabilitation of a flood-irrigated area on the Murray River in South Australia," Agricultural Water Management, Elsevier, vol. 96(11), pages 1679-1682, November.
    12. Moore, Rebecca & Price, Joseph, 2009. "Productive Efficiency in Water Usage: An Analysis of Differences among Farm Types and Sizes in Georgia," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49482, Agricultural and Applied Economics Association.
    13. Wheeler, Sarah Ann, 2008. "What influences agricultural professionals' views towards organic agriculture?," Ecological Economics, Elsevier, vol. 65(1), pages 145-154, March.
    14. Rigby, D. & Caceres, D., 2001. "Organic farming and the sustainability of agricultural systems," Agricultural Systems, Elsevier, vol. 68(1), pages 21-40, April.
    15. Adamson, David & Loch, Adam, 2014. "Possible negative feedbacks from ‘gold-plating’ irrigation infrastructure," Agricultural Water Management, Elsevier, vol. 145(C), pages 134-144.
    16. Moore, A.D. & Robertson, M.J. & Routley, R., 2011. "Evaluation of the water use efficiency of alternative farm practices at a range of spatial and temporal scales: A conceptual framework and a modelling approach," Agricultural Systems, Elsevier, vol. 104(2), pages 162-174, February.
    17. John Quiggin & David Adamson & Sarah Chambers & Peggy Schrobback, 2010. "Climate Change, Uncertainty, and Adaptation: The Case of Irrigated Agriculture in the Murray–Darling Basin in Australia," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(4), pages 531-554, December.
    18. repec:bla:canjag:v:58:y:2010:i:s1:p:531-554 is not listed on IDEAS
    19. S. Wheeler & A. Zuo & H. Bjornlund & C. Lane Miller, 2012. "Selling the Farm Silver? Understanding Water Sales to the Australian Government," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(1), pages 133-154, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mannaf, Maksuda & Wheeler, Sarah Ann & Zuo, Alec, 2023. "Global and Local Spatial Spill-Overs: What Matters Most for the Diffusion of Organic Agriculture in Australia?," Ecological Economics, Elsevier, vol. 209(C).
    2. Aguilera, Eduardo & Díaz-Gaona, Cipriano & García-Laureano, Raquel & Reyes-Palomo, Carolina & Guzmán, Gloria I. & Ortolani, Livia & Sánchez-Rodríguez, Manuel & Rodríguez-Estévez, Vicente, 2020. "Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. A review," Agricultural Systems, Elsevier, vol. 181(C).
    3. Zhang, Biao & Fu, Zetian & Wang, Jieqiong & Zhang, Lingxian, 2019. "Farmers’ adoption of water-saving irrigation technology alleviates water scarcity in metropolis suburbs: A case study of Beijing, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 349-357.
    4. David Adamson & Adam Loch & Kurt Schwabe, 2017. "Adaptation responses to increasing drought frequency," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 61(3), pages 385-403, July.
    5. Daghagh Yazd, Sahar & Wheeler, Sarah Ann & Zuo, Alec, 2020. "Understanding the impacts of water scarcity and socio-economic demographics on farmer mental health in the Murray-Darling Basin," Ecological Economics, Elsevier, vol. 169(C).
    6. Wheeler, Sarah Ann & Marning, Angelika, 2019. "Turning water into wine: Exploring water security perceptions and adaptation behaviour amongst conventional, organic and biodynamic grape growers," Land Use Policy, Elsevier, vol. 82(C), pages 528-537.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Adamson & Adam Loch, 2018. "Achieving environmental flows where buyback is constrained," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(1), pages 83-102, January.
    2. Adam Loch & David Adamson, 2015. "Drought and the rebound effect: a Murray–Darling Basin example," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1429-1449, December.
    3. Claire Settre & Jeff Connor & Sarah Ann Wheeler, 2017. "Reviewing the Treatment of Uncertainty in Hydro-economic Modeling of the Murray–Darling Basin, Australia," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-35, July.
    4. Arpaphan Pattanapant & Ganesh P. Shivakoti, 2009. "Opportunities and constraints of organic agriculture in Chiang Mai Province, Thailand," Asia-Pacific Development Journal, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), vol. 16(1), pages 115-147, June.
    5. Adamson, David & Loch, Adam, 2014. "Possible negative feedbacks from ‘gold-plating’ irrigation infrastructure," Agricultural Water Management, Elsevier, vol. 145(C), pages 134-144.
    6. Simon de Bonviller & Alec Zuo & Sarah Ann Wheeler, 2019. "Is there evidence of insider trading in Australian water markets?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(2), pages 307-327, April.
    7. Wheeler, Sarah Ann & Marning, Angelika, 2019. "Turning water into wine: Exploring water security perceptions and adaptation behaviour amongst conventional, organic and biodynamic grape growers," Land Use Policy, Elsevier, vol. 82(C), pages 528-537.
    8. Carlos Mario Gómez Gómez & C. D. Pérez-Blanco & David Adamson & Adam Loch, 2018. "Managing Water Scarcity at a River Basin Scale with Economic Instruments," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-31, January.
    9. Sarah Ann Wheeler & Ying Xu & Alec Zuo, 2020. "Modelling the climate, water and socio-economic drivers of farmer exit in the Murray-Darling Basin," Climatic Change, Springer, vol. 158(3), pages 551-574, February.
    10. Mai, Thanh & Mushtaq, Shahbaz & Loch, Adam & Reardon-Smith, K. & An-Vo, Duc-Anh, 2019. "A systems thinking approach to water trade: Finding leverage for sustainable development," Land Use Policy, Elsevier, vol. 82(C), pages 595-608.
    11. R. Quentin Grafton, 2017. "Editorial — Water Reform and Planning in the Murray–Darling Basin, Australia," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-18, July.
    12. Adiprasetyo, Teguh & Suhartoyo, Hery & Firdaus, Arief, 2017. "Developing Strategy for Advancing Organic Agriculture as Sustainable Agricultural Practice," INA-Rxiv wb37h, Center for Open Science.
    13. Bjornlund, H. & Xu, W. & Wheeler, S., 2014. "An overview of water sharing and participation issues for irrigators and their communities in Alberta: Implications for water policy," Agricultural Water Management, Elsevier, vol. 145(C), pages 171-180.
    14. Mukherjee, Monobina & Schwabe, Kurt A., 2014. "Where's the salt? A spatial hedonic analysis of the value of groundwater to irrigated agriculture," Agricultural Water Management, Elsevier, vol. 145(C), pages 110-122.
    15. Casolani, Nicola & Nissi, Eugenia & Giampaolo, Antonio & Liberatore, Lolita, 2021. "Evaluating the effects of European support measures for Italian organic farms," Land Use Policy, Elsevier, vol. 102(C).
    16. Loch, Adam & Adamson, David & Mallawaarachchi, Thilak, 2013. "Hydrology and Economics in Water Management Policy under Increasing uncertainty," Risk and Sustainable Management Group Working Papers 156479, University of Queensland, School of Economics.
    17. Juliane Haensch & Sarah Ann Wheeler & Alec Zuo, 2021. "Explaining permanent and temporary water market trade patterns within local areas in the southern Murray–Darling Basin," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(2), pages 318-348, April.
    18. Wheeler, Sarah Ann & Zuo, Alec, 2017. "The impact of drought and water scarcity on irrigator farm exit intentions in the Murray– Darling Basin," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 61(3), July.
    19. Pradeleix, L. & Roux, P. & Bouarfa, S. & Bellon-Maurel, V., 2023. "Multilevel life cycle assessment to evaluate prospective agricultural development scenarios in a semi-arid irrigated region of Tunisia," Agricultural Systems, Elsevier, vol. 212(C).
    20. Juliane Haensch & Sarah Ann Wheeler & Alec Zuo & Henning Bjornlund, 2016. "The Impact of Water and Soil Salinity on Water Market Trading in the Southern Murray–Darling Basin," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-26, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:112:y:2015:i:c:p:78-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.