IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v52y2020i32p3448-3463.html
   My bibliography  Save this article

Forecasting the aggregate stock market volatility in a data-rich world

Author

Listed:
  • Li Liu
  • Feng Ma
  • Qing Zeng
  • Yaojie Zhang

Abstract

In this article, we utilize the basic lasso and elastic net models to revisit the predictive performance of aggregate stock market volatility in a data-rich world. Motivated by the existing literature, we determine several candidate predictors that have 22 technical indicators and 14 macroeconomic and financial variables. Our out-of-sample results reveal several noteworthy findings. First, few macroeconomic and financial variables and most of technical indicators have superior performance relative to the benchmark model. Second, combination forecasts are able to significantly beat the benchmark and some signal predictors Third, the lasso and elastic models with all predictors can generate more accurate forecasts than the benchmark and some other predictors in both the statistical and economic sense. Fourth, the lasso and elastic models exhibit higher forecast accuracy during periods of expansions and recessions. Finally, our findings are robust to several tests, such as different forecasting windows, forecasting models, and forecasting evaluations.

Suggested Citation

  • Li Liu & Feng Ma & Qing Zeng & Yaojie Zhang, 2020. "Forecasting the aggregate stock market volatility in a data-rich world," Applied Economics, Taylor & Francis Journals, vol. 52(32), pages 3448-3463, June.
  • Handle: RePEc:taf:applec:v:52:y:2020:i:32:p:3448-3463
    DOI: 10.1080/00036846.2020.1713291
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2020.1713291
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2020.1713291?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Zhifeng & Zhang, Xiaotong & Li, Tingyu, 2023. "Forecasting stock return volatility in data-rich environment: A new powerful predictor," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    2. Li, Xiaodan & Gong, Xue & Xing, Lu, 2024. "The impact of presidential economic approval rating on stock volatility: An industrial perspective," Finance Research Letters, Elsevier, vol. 63(C).
    3. Song, Ziyu & Gong, Xiaomin & Zhang, Cheng & Yu, Changrui, 2023. "Investor sentiment based on scaled PCA method: A powerful predictor of realized volatility in the Chinese stock market," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 528-545.
    4. Chen, Juan & Ma, Feng & Qiu, Xuemei & Li, Tao, 2023. "The role of categorical EPU indices in predicting stock-market returns," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 365-378.
    5. Zhikai Zhang & Yaojie Zhang & Yudong Wang & Qunwei Wang, 2024. "The predictability of carbon futures volatility: New evidence from the spillovers of fossil energy futures returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(4), pages 557-584, April.
    6. Guo, Yangli & Ma, Feng & Li, Haibo & Lai, Xiaodong, 2022. "Oil price volatility predictability based on global economic conditions," International Review of Financial Analysis, Elsevier, vol. 82(C).
    7. He, Mengxi & Wang, Yudong & Zeng, Qing & Zhang, Yaojie, 2023. "Forecasting aggregate stock market volatility with industry volatilities: The role of spillover index," Research in International Business and Finance, Elsevier, vol. 65(C).
    8. Yuan, Xianghui & Li, Xiang, 2022. "Delta-hedging demand and intraday momentum: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    9. Yu, Xing & Li, Yanyan & Gong, Xue & Zhang, Nan, 2022. "Evaluating the performance of futures hedging using factors-driven realized volatility," International Review of Financial Analysis, Elsevier, vol. 84(C).
    10. Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2021. "Realized skewness and the short-term predictability for aggregate stock market volatility," Economic Modelling, Elsevier, vol. 103(C).
    11. Pavan Kumar Nagula & Christos Alexakis, 2022. "A Novel Machine Learning Approach for Predicting the NIFTY50 Index in India," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 28(3), pages 155-170, November.
    12. Gong, Xue & Zhang, Weiguo & Wang, Junbo & Wang, Chao, 2022. "Investor sentiment and stock volatility: New evidence," International Review of Financial Analysis, Elsevier, vol. 80(C).
    13. Ghani, Maria & Guo, Qiang & Ma, Feng & Li, Tao, 2022. "Forecasting Pakistan stock market volatility: Evidence from economic variables and the uncertainty index," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 1180-1189.
    14. Ma, Feng & Guo, Yangli & Chevallier, Julien & Huang, Dengshi, 2022. "Macroeconomic attention, economic policy uncertainty, and stock volatility predictability," International Review of Financial Analysis, Elsevier, vol. 84(C).
    15. Li, Xiaodan & Gong, Xue & Ge, Futing & Huang, Jingjing, 2024. "Forecasting stock volatility using pseudo-out-of-sample information," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 123-135.
    16. Guo, Yangli & He, Feng & Liang, Chao & Ma, Feng, 2022. "Oil price volatility predictability: New evidence from a scaled PCA approach," Energy Economics, Elsevier, vol. 105(C).
    17. Muhammad Kamran Khan & Jian‐Zhou Teng & Muhammad Imran Khan & Muhammad Fayaz Khan, 2023. "Stock market reaction to macroeconomic variables: An assessment with dynamic autoregressive distributed lag simulations," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2436-2448, July.
    18. Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:52:y:2020:i:32:p:3448-3463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.