IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v47y2020i4p1192-1221.html
   My bibliography  Save this article

A study on the least squares estimator of multivariate isotonic regression function

Author

Listed:
  • Pramita Bagchi
  • Subhra Sankar Dhar

Abstract

Consider the problem of pointwise estimation of f in a multivariate isotonic regression model Z=f(X1,…,Xd)+ϵ, where Z is the response variable, f is an unknown nonparametric regression function, which is isotonic with respect to each component, and ϵ is the error term. In this article, we investigate the behavior of the least squares estimator of f. We generalize the greatest convex minorant characterization of isotonic regression estimator for the multivariate case and use it to establish the asymptotic distribution of properly normalized version of the estimator. Moreover, we test whether the multivariate isotonic regression function at a fixed point is larger (or smaller) than a specified value or not based on this estimator, and the consistency of the test is established. The practicability of the estimator and the test are shown on simulated and real data as well.

Suggested Citation

  • Pramita Bagchi & Subhra Sankar Dhar, 2020. "A study on the least squares estimator of multivariate isotonic regression function," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1192-1221, December.
  • Handle: RePEc:bla:scjsta:v:47:y:2020:i:4:p:1192-1221
    DOI: 10.1111/sjos.12459
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12459
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Birke, Melanie & Dette, Holger, 2006. "Testing strict monotonicity in nonparametric regression," Technical Reports 2006,49, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Pramita Bagchi & Moulinath Banerjee & Stilian A. Stoev, 2016. "Inference for Monotone Functions Under Short- and Long-Range Dependence: Confidence Intervals and New Universal Limits," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1634-1647, October.
    3. Moulinath Banerjee & Jon A. Wellner, 2005. "Confidence Intervals for Current Status Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(3), pages 405-424, September.
    4. Paranjape, S. R. & Park, C., 1973. "Laws of iterated logarithm of multiparameter wiener processes," Journal of Multivariate Analysis, Elsevier, vol. 3(1), pages 132-136, March.
    5. Subhra sankar Dhar, 2016. "Trimmed Mean Isotonic Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 202-212, March.
    6. Jason Abrevaya & Jian Huang, 2005. "On the Bootstrap of the Maximum Score Estimator," Econometrica, Econometric Society, vol. 73(4), pages 1175-1204, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    2. Taisuke Otsu & Myung Hwan Seo, 2014. "Asymptotics for maximum score method under general conditions," STICERD - Econometrics Paper Series 571, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    3. Koo, Bonsoo & Seo, Myung Hwan, 2015. "Structural-break models under mis-specification: Implications for forecasting," Journal of Econometrics, Elsevier, vol. 188(1), pages 166-181.
    4. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    5. Irene Botosaru & Chris Muris, 2017. "Binarization for panel models with fixed effects," CeMMAP working papers 31/17, Institute for Fiscal Studies.
    6. Sankar, Subhra & Bergsma, Wicher & Dassios, Angelos, 2017. "Testing independence of covariates and errors in nonparametric regression," LSE Research Online Documents on Economics 83780, London School of Economics and Political Science, LSE Library.
    7. D. F. Benoit & D. Van Den Poel, 2010. "Binary quantile regression: A Bayesian approach based on the asymmetric Laplace density," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/662, Ghent University, Faculty of Economics and Business Administration.
    8. Babii, Andrii & Kumar, Rohit, 2023. "Isotonic regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 234(2), pages 371-393.
    9. Birke, Melanie, 2006. "Central limit theorems for the integrated squared error of derivative estimators," Technical Reports 2006,53, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    10. Florios, Kostas & Skouras, Spyros, 2008. "Exact computation of max weighted score estimators," Journal of Econometrics, Elsevier, vol. 146(1), pages 86-91, September.
    11. Jason R. Blevins, 2013. "Non-Standard Rates of Convergence of Criterion-Function-Based Set Estimators," Working Papers 13-02, Ohio State University, Department of Economics.
    12. Brian Blackburn & Aprajit Mahajan & Alessandro Tarozzi & Joanne Yoong, "undated". "Bednets, Information and Malaria in Orissa," Discussion Papers 08-025, Stanford Institute for Economic Policy Research.
    13. repec:cep:stiecm:/2014/571 is not listed on IDEAS
    14. Mei-Cheng Wang & Yuxin Zhu, 2022. "Bias correction via outcome reassignment for cross-sectional data with binary disease outcome," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 659-674, October.
    15. Rafael Bernardo Carmona-Benítez & María Rosa Nieto, 2017. "Comparison of bootstrap estimation intervals to forecast arithmetic mean and median air passenger demand," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(7), pages 1211-1224, May.
    16. Sungwook Kim & Michael P. Fay & Michael A. Proschan, 2021. "Valid and approximately valid confidence intervals for current status data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 438-452, July.
    17. Olivier Chatain & Denisa Mindruta, 2017. "Estimating Value Creation from Revealed Preferences: Application to Value-based Strategies," Strategic Management Journal, Wiley Blackwell, vol. 38(10), pages 1964-1985, October.
    18. Zhexiao Lin & Fang Han, 2023. "On the failure of the bootstrap for Chatterjee's rank correlation," Papers 2303.14088, arXiv.org, revised Apr 2023.
    19. Kyungchul Song, 2009. "Two-Step Extremum Estimation with Estimated Single-Indices," PIER Working Paper Archive 09-012, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    20. Fu Ouyang & Thomas Tao Yang, 2020. "Semiparametric Estimation of Dynamic Binary Choice Panel Data Models," ANU Working Papers in Economics and Econometrics 2020-671, Australian National University, College of Business and Economics, School of Economics.
    21. Wan, Yuanyuan & Xu, Haiqing, 2015. "Inference in semiparametric binary response models with interval data," Journal of Econometrics, Elsevier, vol. 184(2), pages 347-360.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:47:y:2020:i:4:p:1192-1221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.