IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v20y2008i1p3-18.html
   My bibliography  Save this article

Asymptotic normality of a nonparametric estimator of the conditional mode function for functional data

Author

Listed:
  • M'hamed Ezzahrioui
  • Elias Ould-Saïd

Abstract

We consider the estimation of the conditional mode function when the covariables take values in some abstract function space. It is shown that, under some regularity conditions, the kernel estimate of the conditional mode is asymptotically normally distributed. From this, we derive the asymptotic normality of a predictor and propose confidence bands for the conditional mode function. Simulations are drawn to show how our methodology can be implemented.

Suggested Citation

  • M'hamed Ezzahrioui & Elias Ould-Saïd, 2008. "Asymptotic normality of a nonparametric estimator of the conditional mode function for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(1), pages 3-18.
  • Handle: RePEc:taf:gnstxx:v:20:y:2008:i:1:p:3-18
    DOI: 10.1080/10485250701541454
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485250701541454
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485250701541454?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salim Bouzebda & Christophe Chesneau, 2020. "A Note on the Nonparametric Estimation of the Conditional Mode by Wavelet Methods," Stats, MDPI, vol. 3(4), pages 1-9, October.
    2. Akkal Fatima & Kadiri Nadia & Rabhi Abbes, 2021. "Asymptotic Normality of Conditional Density and Conditional Mode in the Functional Single Index Model," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 25(1), pages 1-24, March.
    3. Frédéric Ferraty & Nadia Kudraszow & Philippe Vieu, 2012. "Nonparametric estimation of a surrogate density function in infinite-dimensional spaces," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 447-464.
    4. Ling, Nengxiang & Xu, Qian, 2012. "Asymptotic normality of conditional density estimation in the single index model for functional time series data," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2235-2243.
    5. M'hamed Ezzahrioui & Elias Ould Saïd, 2010. "Some asymptotic results of a non‐parametric conditional mode estimator for functional time‐series data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(2), pages 171-201, May.
    6. Laib, Naâmane & Louani, Djamal, 2010. "Nonparametric kernel regression estimation for functional stationary ergodic data: Asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2266-2281, November.
    7. Rachdi, Mustapha & Laksaci, Ali & Demongeot, Jacques & Abdali, Abdel & Madani, Fethi, 2014. "Theoretical and practical aspects of the quadratic error in the local linear estimation of the conditional density for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 53-68.
    8. Liu, Qiaojing & Zhao, Shoujiang, 2013. "Pointwise and uniform moderate deviations for nonparametric regression function estimator on functional data," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1372-1381.
    9. Amel, Azzi & Ali, Laksaci & Elias, Ould Saïd, 2022. "On the robustification of the kernel estimator of the functional modal regression," Statistics & Probability Letters, Elsevier, vol. 181(C).
    10. Sophie Dabo-Niang & Zoulikha Kaid & Ali Laksaci, 2015. "Asymptotic properties of the kernel estimate of spatial conditional mode when the regressor is functional," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 131-160, April.
    11. Azzedine, Nadjia & Laksaci, Ali & Ould-Saïd, Elias, 2008. "On robust nonparametric regression estimation for a functional regressor," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3216-3221, December.
    12. Kudraszow, Nadia L. & Vieu, Philippe, 2013. "Uniform consistency of kNN regressors for functional variables," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1863-1870.
    13. Dabo-Niang, Sophie & Kaid, Zoulikha & Laksaci, Ali, 2012. "On spatial conditional mode estimation for a functional regressor," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1413-1421.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:20:y:2008:i:1:p:3-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.