IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v24y2015i4p597-622.html
   My bibliography  Save this article

Local polynomial modelling of the conditional quantile for functional data

Author

Listed:
  • Fatiha Messaci
  • Nahima Nemouchi
  • Idir Ouassou
  • Mustapha Rachdi

Abstract

As the problem of prediction is of great interest, several tools based on different methods and devoted to various contexts, have been developed in the statistical literature. The contribution of this paper is to focus on the study of the local linear nonparametric estimation of the quantile of a scalar response variable given a functional covariate. In fact, the covariate is a random variable taking values in a semi-metric space which can have an infinite dimension in order to permit to deal with curves. We first establish pointwise and uniform almost-complete convergences, with rates, of the conditional distribution function estimator. Then, we deduce the uniform almost-complete convergence of the obtained local linear conditional quantile estimator. We also bring out the application of our results to the multivariate case as well as to the particular case of the kernel method. Moreover, a real data study allows to place our conditional median estimator in relation to several other predictive tools. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Fatiha Messaci & Nahima Nemouchi & Idir Ouassou & Mustapha Rachdi, 2015. "Local polynomial modelling of the conditional quantile for functional data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(4), pages 597-622, November.
  • Handle: RePEc:spr:stmapp:v:24:y:2015:i:4:p:597-622
    DOI: 10.1007/s10260-015-0296-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-015-0296-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10260-015-0296-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferraty, Frédéric & Vieu, Philippe, 2009. "Additive prediction and boosting for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1400-1413, February.
    2. K. Benhenni & F. Ferraty & M. Rachdi & P. Vieu, 2007. "Local smoothing regression with functional data," Computational Statistics, Springer, vol. 22(3), pages 353-369, September.
    3. J. Barrientos-Marin & F. Ferraty & P. Vieu, 2010. "Locally modelled regression and functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(5), pages 617-632.
    4. Boj, Eva & Delicado, Pedro & Fortiana, Josep, 2010. "Distance-based local linear regression for functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 429-437, February.
    5. Frédéric Ferraty & Ali Laksaci & Philippe Vieu, 2006. "Estimating Some Characteristics of the Conditional Distribution in Nonparametric Functional Models," Statistical Inference for Stochastic Processes, Springer, vol. 9(1), pages 47-76, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fahimah A. Al-Awadhi & Zoulikha Kaid & Ali Laksaci & Idir Ouassou & Mustapha Rachdi, 2019. "Functional data analysis: local linear estimation of the $$L_1$$ L 1 -conditional quantiles," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 217-240, June.
    2. Zhiyong Zhou & Zhengyan Lin, 2016. "Asymptotic normality of locally modelled regression estimator for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 116-131, March.
    3. Ali Laksaci & Elias Ould Saïd & Mustapha Rachdi, 2021. "Uniform consistency in number of neighbors of the kNN estimator of the conditional quantile model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(6), pages 895-911, August.
    4. Lihong Wang, 2020. "Nearest neighbors estimation for long memory functional data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 709-725, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han Shang, 2014. "Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density," Computational Statistics, Springer, vol. 29(3), pages 829-848, June.
    2. Chagny, Gaëlle & Roche, Angelina, 2016. "Adaptive estimation in the functional nonparametric regression model," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 105-118.
    3. Chouaf Abdelhak & Laksaci Ali, 2012. "On the functional local linear estimate for spatial regression," Statistics & Risk Modeling, De Gruyter, vol. 29(3), pages 189-214, August.
    4. Rachdi, Mustapha & Laksaci, Ali & Demongeot, Jacques & Abdali, Abdel & Madani, Fethi, 2014. "Theoretical and practical aspects of the quadratic error in the local linear estimation of the conditional density for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 53-68.
    5. Gheriballah, Abdelkader & Laksaci, Ali & Sekkal, Soumeya, 2013. "Nonparametric M-regression for functional ergodic data," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 902-908.
    6. Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
    7. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    8. Oussama Bouanani & Saâdia Rahmani & Ali Laksaci & Mustapha Rachdi, 2020. "Asymptotic normality of conditional mode estimation for functional dependent data," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(2), pages 465-481, June.
    9. Abderrahmane Belguerna & Hamza Daoudi & Khadidja Abdelhak & Boubaker Mechab & Zouaoui Chikr Elmezouar & Fatimah Alshahrani, 2024. "A Comprehensive Analysis of MSE in Estimating Conditional Hazard Functions: A Local Linear, Single Index Approach for MAR Scenarios," Mathematics, MDPI, vol. 12(3), pages 1-20, February.
    10. Demongeot, Jacques & Hamie, Ali & Laksaci, Ali & Rachdi, Mustapha, 2016. "Relative-error prediction in nonparametric functional statistics: Theory and practice," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 261-268.
    11. Laurent Delsol, 2013. "No effect tests in regression on functional variable and some applications to spectrometric studies," Computational Statistics, Springer, vol. 28(4), pages 1775-1811, August.
    12. Mustapha Rachdi & Ali Laksaci & Zoulikha Kaid & Abbassia Benchiha & Fahimah A. Al‐Awadhi, 2021. "k‐Nearest neighbors local linear regression for functional and missing data at random," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(1), pages 42-65, February.
    13. Fahimah A. Al-Awadhi & Zoulikha Kaid & Ali Laksaci & Idir Ouassou & Mustapha Rachdi, 2019. "Functional data analysis: local linear estimation of the $$L_1$$ L 1 -conditional quantiles," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 217-240, June.
    14. Bouabsa Wahiba, 2023. "The Estimating of the Conditional Density with Application to the Mode Function in Scalar-On-Function Regression Structure: Local Linear Approach with Missing at Random," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 27(1), pages 17-32, March.
    15. Zhiyong Zhou & Zhengyan Lin, 2016. "Asymptotic normality of locally modelled regression estimator for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 116-131, March.
    16. Kamal Boukhetala & Jean-François Dupuy, 2019. "Modélisation Stochastique et Statistique Book of Proceedings," Post-Print hal-02593238, HAL.
    17. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    18. Han Lin Shang, 2014. "Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(3), pages 599-615, September.
    19. Boumahdi, Mounir & Ouassou, Idir & Rachdi, Mustapha, 2023. "Estimation in nonparametric functional-on-functional models with surrogate responses," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    20. Boente, Graciela & Vahnovan, Alejandra, 2017. "Robust estimators in semi-functional partial linear regression models," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 59-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:24:y:2015:i:4:p:597-622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.