IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v71y2014icp986-1000.html
   My bibliography  Save this article

(Psycho-)analysis of benchmark experiments: A formal framework for investigating the relationship between data sets and learning algorithms

Author

Listed:
  • Eugster, Manuel J.A.
  • Leisch, Friedrich
  • Strobl, Carolin

Abstract

It is common knowledge that the performance of different learning algorithms depends on certain characteristics of the data—such as dimensionality, linear separability or sample size. However, formally investigating this relationship in an objective and reproducible way is not trivial. A new formal framework for describing the relationship between data set characteristics and the performance of different learning algorithms is proposed. The framework combines the advantages of benchmark experiments with the formal description of data set characteristics by means of statistical and information-theoretic measures and with the recursive partitioning of Bradley–Terry models for comparing the algorithms’ performances. The formal aspects of each component are introduced and illustrated by means of an artificial example. Its real-world usage is demonstrated with an application example consisting of thirteen widely-used data sets and six common learning algorithms. The Appendix provides information on the implementation and the usage of the framework within the R language.

Suggested Citation

  • Eugster, Manuel J.A. & Leisch, Friedrich & Strobl, Carolin, 2014. "(Psycho-)analysis of benchmark experiments: A formal framework for investigating the relationship between data sets and learning algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 986-1000.
  • Handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:986-1000
    DOI: 10.1016/j.csda.2013.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313002946
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Achim Zeileis & Kurt Hornik, 2007. "Generalized M‐fluctuation tests for parameter instability," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 61(4), pages 488-508, November.
    2. Givens, G.H. & Beveridge, J.R. & Phillips, P.J. & Draper, B. & Lui, Y.M. & Bolme, D., 2013. "Introduction to face recognition and evaluation of algorithm performance," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 236-247.
    3. Douglas Critchlow & Michael Fligner, 1991. "Paired comparison, triple comparison, and ranking experiments as generalized linear models, and their implementation on GLIM," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 517-533, September.
    4. Torti, Francesca & Perrotta, Domenico & Atkinson, Anthony C. & Riani, Marco, 2012. "Benchmark testing of algorithms for very robust regression: FS, LMS and LTS," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2501-2512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anne-Laure Boulesteix & Robert Hable & Sabine Lauer & Manuel J. A. Eugster, 2015. "A Statistical Framework for Hypothesis Testing in Real Data Comparison Studies," The American Statistician, Taylor & Francis Journals, vol. 69(3), pages 201-212, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carolin Strobl & Florian Wickelmaier & Achim Zeileis, 2011. "Accounting for Individual Differences in Bradley-Terry Models by Means of Recursive Partitioning," Journal of Educational and Behavioral Statistics, , vol. 36(2), pages 135-153, April.
    2. Ting Wang & Edgar C. Merkle & Achim Zeileis, 2013. "Score-Based Tests of Measurement Invariance: Use in Practice," Working Papers 2013-33, Faculty of Economics and Statistics, Universität Innsbruck.
    3. Emilian DOBRESCU, 2017. "Modelling an Emergent Economy and Parameter Instability Problem," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 5-28, June.
    4. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
    5. Duo Qin & Sophie van H¸llen & Qing-Chao Wang, 2014. "What Happens to Wage Elasticities When We Strip Playometrics? Revisiting Married Women Labour Supply Model," Working Papers 190, Department of Economics, SOAS University of London, UK.
    6. Brunori, Paolo & Davillas, Apostolos & Jones, Andrew M. & Scarchilli, Giovanna, 2022. "Model-based Recursive Partitioning to Estimate Unfair Health Inequalities in the United Kingdom Household Longitudinal Study," Journal of Economic Behavior & Organization, Elsevier, vol. 204(C), pages 543-565.
    7. Maria Teresa Alonso & Carlo Ferigato & Deimos Ibanez Segura & Domenico Perrotta & Adria Rovira-Garcia & Emmanuele Sordini, 2021. "Analysis of ‘Pre-Fit’ Datasets of gLAB by Robust Statistical Techniques," Stats, MDPI, vol. 4(2), pages 1-19, May.
    8. Duo Qin & Sophie Van Huellen & Qing-Chao Wang, 2015. "How Credible Are Shrinking Wage Elasticities of Married Women Labour Supply?," Econometrics, MDPI, vol. 4(1), pages 1-31, December.
    9. Cynthia Huber & Norbert Benda & Tim Friede, 2022. "Subgroup identification in individual participant data meta-analysis using model-based recursive partitioning," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 797-815, September.
    10. Jonathan Zufferey, 2016. "Investigating the migrant mortality advantage at the intersections of social stratification in Switzerland," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 34(32), pages 899-926.
    11. Christophe Dutang & Quentin Guibert, 2021. "An explicit split point procedure in model-based trees allowing for a quick fitting of GLM trees and GLM forests," Post-Print hal-03448250, HAL.
    12. Nan-Ting Liu & Feng-Chang Lin & Yu-Shan Shih, 2020. "Count regression trees," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 5-27, March.
    13. Arismendi, Juan C. & Broda, Simon, 2017. "Multivariate elliptical truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 29-44.
    14. Florian Wickelmaier & Achim Zeileis, 2016. "Using Recursive Partitioning to Account for Parameter Heterogeneity in Multinomial Processing Tree Models," Working Papers 2016-26, Faculty of Economics and Statistics, Universität Innsbruck.
    15. Lisa Dandolo & Klaus Telkmann & Christina Hartig & Sophie Horstmann & Sara Pedron & Lars Schwettmann & Peter Selsam & Alexandra Schneider & Gabriele Bolte & on behalf of the INGER Study Group, 2023. "Do Multiple Sex/Gender Dimensions Play a Role in the Association of Green Space and Self-Rated Health? Model-Based Recursive Partitioning Results from the KORA INGER Study," IJERPH, MDPI, vol. 20(7), pages 1-23, March.
    16. Selin Ahipaşaoğlu, 2015. "Fast algorithms for the minimum volume estimator," Journal of Global Optimization, Springer, vol. 62(2), pages 351-370, June.
    17. Araki, Kenji & Hirose, Yoshihiro & Komaki, Fumiyasu, 2019. "Paired comparison models with age effects modeled as piecewise quadratic splines," International Journal of Forecasting, Elsevier, vol. 35(2), pages 733-740.
    18. Payton J. Jones & Patrick Mair & Thorsten Simon & Achim Zeileis, 2020. "Network Trees: A Method for Recursively Partitioning Covariance Structures," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 926-945, December.
    19. Christian Garciga & Randal J. Verbrugge, 2020. "A New Tool for Robust Estimation and Identification of Unusual Data Points," Working Papers 20-08, Federal Reserve Bank of Cleveland.
    20. Edgar Merkle & Achim Zeileis, 2013. "Tests of Measurement Invariance Without Subgroups: A Generalization of Classical Methods," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 59-82, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:986-1000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.