IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v36y2011i2p135-153.html
   My bibliography  Save this article

Accounting for Individual Differences in Bradley-Terry Models by Means of Recursive Partitioning

Author

Listed:
  • Carolin Strobl

    (Ludwig-Maximilians-Universität München)

  • Florian Wickelmaier

    (Eberhard Karls Universität Tübingen)

  • Achim Zeileis

    (Universität Innsbruck)

Abstract

The preference scaling of a group of subjects may not be homogeneous, but different groups of subjects with certain characteristics may show different preference scalings, each of which can be derived from paired comparisons by means of the Bradley-Terry model. Usually, either different models are fit in predefined subsets of the sample or the effects of subject covariates are explicitly specified in a parametric model. In both cases, categorical covariates can be employed directly to distinguish between the different groups, while numeric covariates are typically discretized prior to modeling. Here, a semiparametric approach for recursive partitioning of Bradley-Terry models is introduced as a means for identifying groups of subjects with homogeneous preference scalings in a data-driven way. In this approach, the covariates that—in main effects or interactions—distinguish between groups of subjects with different preference orderings, are detected automatically from the set of candidate covariates. One main advantage of this approach is that sensible partitions in numeric covariates are also detected automatically.

Suggested Citation

  • Carolin Strobl & Florian Wickelmaier & Achim Zeileis, 2011. "Accounting for Individual Differences in Bradley-Terry Models by Means of Recursive Partitioning," Journal of Educational and Behavioral Statistics, , vol. 36(2), pages 135-153, April.
  • Handle: RePEc:sae:jedbes:v:36:y:2011:i:2:p:135-153
    DOI: 10.3102/1076998609359791
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998609359791
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998609359791?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. N. S. Matthews & K. P. Morris, 1995. "An Application of Bradley‐Terry‐Type Models to the Measurement of Pain," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(2), pages 243-255, June.
    2. Douglas Critchlow & Michael Fligner, 1991. "Paired comparison, triple comparison, and ranking experiments as generalized linear models, and their implementation on GLIM," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 517-533, September.
    3. Achim Zeileis & Kurt Hornik, 2007. "Generalized M‐fluctuation tests for parameter instability," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 61(4), pages 488-508, November.
    4. Dittrich, Regina & Francis, Brian & Hatzinger, Reinhold & Katzenbeisser, Walter, 2006. "Modelling dependency in multivariate paired comparisons: A log-linear approach," Mathematical Social Sciences, Elsevier, vol. 52(2), pages 197-209, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rowland G. Seymour & David Sirl & Simon P. Preston & Ian L. Dryden & Madeleine J. A. Ellis & Bertrand Perrat & James Goulding, 2022. "The Bayesian Spatial Bradley–Terry model: Urban deprivation modelling in Tanzania," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 288-308, March.
    2. Jones, Payton J. & Mair, Patrick & Simon, Thorsten & Zeileis, Achim, 2019. "Network Model Trees," OSF Preprints ha4cw, Center for Open Science.
    3. Weichen Wu & Nynke Niezink & Brian Junker, 2022. "A diagnostic framework for the Bradley–Terry model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 461-484, December.
    4. Mousa, Gehan A. & Elamir, Elsayed A.H. & Hussainey, Khaled, 2022. "The effect of annual report narratives on the cost of capital in the Middle East and North Africa: A machine learning approach," Research in International Business and Finance, Elsevier, vol. 62(C).
    5. Anna Gottard & Giorgio Calzolari, 2014. "Alternative estimating procedures for multiple membership logit models with mixed effects: indirect inference and data cloning," Econometrics Working Papers Archive 2014_07, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    6. Antonio D’Ambrosio & Willem J. Heiser, 2016. "A Recursive Partitioning Method for the Prediction of Preference Rankings Based Upon Kemeny Distances," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 774-794, September.
    7. Daniel Wochner, 2020. "Dynamic Factor Trees and Forests – A Theory-led Machine Learning Framework for Non-Linear and State-Dependent Short-Term U.S. GDP Growth Predictions," KOF Working papers 20-472, KOF Swiss Economic Institute, ETH Zurich.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hatzinger, Reinhold & Dittrich, Regina, 2012. "prefmod: An R Package for Modeling Preferences Based on Paired Comparisons, Rankings, or Ratings," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i10).
    2. Eugster, Manuel J.A. & Leisch, Friedrich & Strobl, Carolin, 2014. "(Psycho-)analysis of benchmark experiments: A formal framework for investigating the relationship between data sets and learning algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 986-1000.
    3. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
    4. Lisa Dandolo & Klaus Telkmann & Christina Hartig & Sophie Horstmann & Sara Pedron & Lars Schwettmann & Peter Selsam & Alexandra Schneider & Gabriele Bolte & on behalf of the INGER Study Group, 2023. "Do Multiple Sex/Gender Dimensions Play a Role in the Association of Green Space and Self-Rated Health? Model-Based Recursive Partitioning Results from the KORA INGER Study," IJERPH, MDPI, vol. 20(7), pages 1-23, March.
    5. Payton J. Jones & Patrick Mair & Thorsten Simon & Achim Zeileis, 2020. "Network Trees: A Method for Recursively Partitioning Covariance Structures," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 926-945, December.
    6. Seibold Heidi & Zeileis Achim & Hothorn Torsten, 2016. "Model-Based Recursive Partitioning for Subgroup Analyses," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 45-63, May.
    7. Susan Athey & Julie Tibshirani & Stefan Wager, 2016. "Generalized Random Forests," Papers 1610.01271, arXiv.org, revised Apr 2018.
    8. Edgar Merkle & Jinyan Fan & Achim Zeileis, 2014. "Testing for Measurement Invariance with Respect to an Ordinal Variable," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 569-584, October.
    9. Sies Aniek & Van Mechelen Iven, 2017. "Comparing Four Methods for Estimating Tree-Based Treatment Regimes," The International Journal of Biostatistics, De Gruyter, vol. 13(1), pages 1-20, May.
    10. Thomas Windberger & Achim Zeileis, 2011. "Structural Breaks in Inflation Dynamics within the European Monetary Union," Working Papers 2011-12, Faculty of Economics and Statistics, Universität Innsbruck.
    11. Firth, David, 2005. "Bradley-Terry Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i01).
    12. Duo Qin & Sophie Van Huellen & Qing-Chao Wang, 2015. "How Credible Are Shrinking Wage Elasticities of Married Women Labour Supply?," Econometrics, MDPI, vol. 4(1), pages 1-31, December.
    13. Cynthia Huber & Norbert Benda & Tim Friede, 2022. "Subgroup identification in individual participant data meta-analysis using model-based recursive partitioning," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 797-815, September.
    14. Nan-Ting Liu & Feng-Chang Lin & Yu-Shan Shih, 2020. "Count regression trees," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 5-27, March.
    15. Florian Wickelmaier & Achim Zeileis, 2016. "Using Recursive Partitioning to Account for Parameter Heterogeneity in Multinomial Processing Tree Models," Working Papers 2016-26, Faculty of Economics and Statistics, Universität Innsbruck.
    16. Amadou Sawadogo & Dominique Lafon & Simplice Dossou-Gbété, 2021. "On the Classification of Colored Textures From a Texture-Ranking Experiment: Observers Ability of Discrimination Quantification," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(1), pages 1-1, January.
    17. repec:jss:jstsof:12:i01 is not listed on IDEAS
    18. Bürgin, Reto & Ritschard, Gilbert, 2015. "Tree-based varying coefficient regression for longitudinal ordinal responses," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 65-80.
    19. Brunori, Paolo & Davillas, Apostolos & Jones, Andrew M. & Scarchilli, Giovanna, 2022. "Model-based Recursive Partitioning to Estimate Unfair Health Inequalities in the United Kingdom Household Longitudinal Study," Journal of Economic Behavior & Organization, Elsevier, vol. 204(C), pages 543-565.
    20. Jones, Payton J. & Mair, Patrick & Simon, Thorsten & Zeileis, Achim, 2019. "Network Model Trees," OSF Preprints ha4cw, Center for Open Science.
    21. Chollete, Lorán & de la Peña, Victor & Klass, Michael, 2023. "The price of independence in a model with unknown dependence," Mathematical Social Sciences, Elsevier, vol. 123(C), pages 51-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:36:y:2011:i:2:p:135-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.