IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v71y2014icp743-757.html
   My bibliography  Save this article

LOL selection in high dimension

Author

Listed:
  • Mougeot, M.
  • Picard, D.
  • Tribouley, K.

Abstract

A selection procedure with no optimization step called LOLA, for Learning Out of Leaders with Adaptation is proposed. LOLA is an auto-driven algorithm with two thresholding steps. The consistency of the LOL procedure (the non adaptive version of LOLA) is proved under sparsity conditions and simulations are conducted to illustrate the practical good performances of LOLA. The behavior of the algorithm is studied when instrumental variables are artificially added without a priori significant connection to the model. Finally, the problem of empirically verifying the conditional convergence hypothesis used in economics concerning the growth rate is studied. To avoid unnecessary discussion about the choice and the pertinence of instrumental variables, the model is embedded in a very high dimensional setting. Using the LOLA algorithm, a solution for modeling the link between the growth rate and the initial level of the gross domestic product is provided and the convergence hypothesis is empirically proved.

Suggested Citation

  • Mougeot, M. & Picard, D. & Tribouley, K., 2014. "LOL selection in high dimension," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 743-757.
  • Handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:743-757
    DOI: 10.1016/j.csda.2012.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312001764
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.
    2. Jean-Pierre Florens & James Heckman & Costas Meghir & Edward Vytlacil, 2002. "Instrumental variables, local instrumental variables and control functions," CeMMAP working papers CWP15/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Mathilde Mougeot & Dominique Picard & Karine Tribouley, 2012. "Learning out of leaders," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(3), pages 475-513, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. d'Haultfoeuille, Xavier, 2010. "A new instrumental method for dealing with endogenous selection," Journal of Econometrics, Elsevier, vol. 154(1), pages 1-15, January.
    2. Severini, Thomas A. & Tripathi, Gautam, 2006. "Some Identification Issues In Nonparametric Linear Models With Endogenous Regressors," Econometric Theory, Cambridge University Press, vol. 22(2), pages 258-278, April.
    3. D’Haultfoeuille, Xavier, 2011. "On The Completeness Condition In Nonparametric Instrumental Problems," Econometric Theory, Cambridge University Press, vol. 27(3), pages 460-471, June.
    4. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2003. "Nonparametric IV estimation of shape-invariant Engel curves," CeMMAP working papers CWP15/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Frolich, Markus, 2007. "Nonparametric IV estimation of local average treatment effects with covariates," Journal of Econometrics, Elsevier, vol. 139(1), pages 35-75, July.
    6. Grégory Jolivet & Bruno Jullien & Fabien Postel-Vinay, 2014. "Reputation and Pricing on the e-Market: Evidence from a Major French Platform," SciencePo Working papers Main hal-03460312, HAL.
    7. Nir Billfeld & Moshe Kim, 2024. "Context-dependent Causality (the Non-Nonotonic Case)," Papers 2404.05021, arXiv.org.
    8. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    9. Babii, Andrii, 2020. "Honest Confidence Sets In Nonparametric Iv Regression And Other Ill-Posed Models," Econometric Theory, Cambridge University Press, vol. 36(4), pages 658-706, August.
    10. Samuele Centorrino & Jean-Pierre Florens & Jean-Michel Loubes, 2022. "Fairness constraint in Structural Econometrics and Application to fair estimation using Instrumental Variables," Papers 2202.08977, arXiv.org.
    11. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    12. Krief, Jerome M., 2017. "Direct instrumental nonparametric estimation of inverse regression functions," Journal of Econometrics, Elsevier, vol. 201(1), pages 95-107.
    13. Aassve, Arnstein & Arpino, Bruno, 2008. "Estimation of causal effects of fertility on economic wellbeing: evidence from rural Vietnam," ISER Working Paper Series 2007-27, Institute for Social and Economic Research.
    14. Masahiro Kato & Masaaki Imaizumi & Kenichiro McAlinn & Haruo Kakehi & Shota Yasui, 2021. "Learning Causal Models from Conditional Moment Restrictions by Importance Weighting," Papers 2108.01312, arXiv.org, revised Sep 2022.
    15. Peter C.B. Phillips & Liangjun Su, 2009. "Nonparametric Structural Estimation via Continuous Location Shifts in an Endogenous Regressor," Cowles Foundation Discussion Papers 1702, Cowles Foundation for Research in Economics, Yale University.
    16. repec:zbw:rwidps:0023 is not listed on IDEAS
    17. Melanie Birke & Sebastien Van Bellegem & Ingrid Van Keilegom, 2017. "Semi-parametric Estimation in a Single-index Model with Endogenous Variables," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 168-191, March.
    18. Irene Botosaru & Chris Muris & Senay Sokullu, 2022. "Time-Varying Linear Transformation Models with Fixed Effects and Endogeneity for Short Panels," Department of Economics Working Papers 2022-01, McMaster University.
    19. Fertig, Michael, 2004. "Shot Across the Bow, Stigma or Selection? The Effect of Repeating a Class on Educational Attainment," IZA Discussion Papers 1266, Institute of Labor Economics (IZA).
    20. Chiappori, Pierre-André & Komunjer, Ivana & Kristensen, Dennis, 2015. "Nonparametric identification and estimation of transformation models," Journal of Econometrics, Elsevier, vol. 188(1), pages 22-39.
    21. Heckman, James J. & Lochner, Lance J. & Todd, Petra E., 2006. "Earnings Functions, Rates of Return and Treatment Effects: The Mincer Equation and Beyond," Handbook of the Economics of Education, in: Erik Hanushek & F. Welch (ed.), Handbook of the Economics of Education, edition 1, volume 1, chapter 7, pages 307-458, Elsevier.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:743-757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.