Cox proportional hazards models with frailty for negatively correlated employment processes
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2013.09.027
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kim, Yongdai & Kim, Joungyoun & Jang, Woncheol, 2013. "An EM algorithm for the proportional hazards model with doubly censored data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 41-51.
- O’Hagan, Adrian & Murphy, Thomas Brendan & Gormley, Isobel Claire, 2012. "Computational aspects of fitting mixture models via the expectation–maximization algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3843-3864.
- J. Heckman & B. Singer, 1984. "The Identifiability of the Proportional Hazard Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 51(2), pages 231-241.
- Lei Liu & Robert A. Wolfe & Xuelin Huang, 2004. "Shared Frailty Models for Recurrent Events and a Terminal Event," Biometrics, The International Biometric Society, vol. 60(3), pages 747-756, September.
- Gerda Claeskens & Rosemary Nguti & Paul Janssen, 2008. "One-sided tests in shared frailty models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 69-82, May.
- Melnykov, Volodymyr & Melnykov, Igor, 2012. "Initializing the EM algorithm in Gaussian mixture models with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1381-1395.
- Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lin, Tsung-I & McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Extending mixtures of factor models using the restricted multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 398-413.
- Bijwaard, Govert, 2011.
"Unobserved Heterogeneity in Multiple-Spell Multiple-States Duration Models,"
IZA Discussion Papers
5748, Institute of Labor Economics (IZA).
- Govert Bijwaard, 2012. "Unobserved Heterogeneity in Multiple-Spell Multiple-States Duration Models," Norface Discussion Paper Series 2012033, Norface Research Programme on Migration, Department of Economics, University College London.
- Vallejos, Catalina A. & Steel, Mark F.J., 2017. "Incorporating unobserved heterogeneity in Weibull survival models: A Bayesian approach," Econometrics and Statistics, Elsevier, vol. 3(C), pages 73-88.
- Galimberti, Giuliano & Soffritti, Gabriele, 2014. "A multivariate linear regression analysis using finite mixtures of t distributions," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 138-150.
- Bouveyron, Charles & Brunet-Saumard, Camille, 2014. "Model-based clustering of high-dimensional data: A review," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 52-78.
- Raúl Alejandro Morán-Vásquez & Edwin Zarrazola & Daya K. Nagar, 2022. "Some Statistical Aspects of the Truncated Multivariate Skew- t Distribution," Mathematics, MDPI, vol. 10(15), pages 1-14, August.
- Qui Tran & Kelley M. Kidwell & Alex Tsodikov, 2018. "A joint model of cancer incidence, metastasis, and mortality," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 385-406, July.
- Riccardo Rastelli & Michael Fop, 2020. "A stochastic block model for interaction lengths," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 485-512, June.
- Sukru Acitas & Pelin Kasap & Birdal Senoglu & Olcay Arslan, 2013. "One-step M -estimators: Jones and Faddy's skewed t -distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(7), pages 1545-1560, July.
- Dekkers, G.J.M., 1994. "The private sector versus the government : A four-state labour market transition model," WORC Paper 94.07.033/2, Tilburg University, Work and Organization Research Centre.
- Tihana Skrinjaric & Maja Sabol, 2024.
"Easier Said than Done: Predicting Downside Risks to House Prices in Croatia,"
Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 74(1), pages 43-72, March.
- Tihana Škrinjarić & Maja Sabol, 2023. "Easier said than done: Predicting downside risks to house prices in Croatia," Working Papers 73, The Croatian National Bank, Croatia.
- Wang, Kesen & Karling, Maicon J. & Arellano-Valle, Reinaldo B. & Genton, Marc G., 2024. "Multivariate unified skew-t distributions and their properties," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
- Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016.
"Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
- Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-921, CIRJE, Faculty of Economics, University of Tokyo.
- Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2015. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-975, CIRJE, Faculty of Economics, University of Tokyo.
- Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-949, CIRJE, Faculty of Economics, University of Tokyo.
- David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.
- Jorge E. Galán & María Rodríguez Moreno, 2020. "At-risk measures and financial stability," Financial Stability Review, Banco de España, issue Autumn.
- Chen, Qihao & Huang, Zhuo & Liang, Fang, 2023. "Measuring systemic risk with high-frequency data: A realized GARCH approach," Finance Research Letters, Elsevier, vol. 54(C).
- Yimei Li & Liang Zhu & Lei Liu & Leslie L. Robison, 2021. "Regression Analysis of Mixed Panel-Count Data with Application to Cancer Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(1), pages 178-195, April.
- Adrian O’Hagan & Arthur White, 2019. "Improved model-based clustering performance using Bayesian initialization averaging," Computational Statistics, Springer, vol. 34(1), pages 201-231, March.
- Julie K. Furberg & Per K. Andersen & Sofie Korn & Morten Overgaard & Henrik Ravn, 2023. "Bivariate pseudo-observations for recurrent event analysis with terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 256-287, April.
- Michael S. Smith & Shaun P. Vahey, 2016. "Asymmetric Forecast Densities for U.S. Macroeconomic Variables from a Gaussian Copula Model of Cross-Sectional and Serial Dependence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 416-434, July.
More about this item
Keywords
Cox proportional hazards model; Equal employment cases; Frailty; Monte-Carlo EM; Negatively correlated processes; Robustness and sensitivity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:70:y:2014:i:c:p:295-307. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.