IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i6p1381-1395.html
   My bibliography  Save this article

Initializing the EM algorithm in Gaussian mixture models with an unknown number of components

Author

Listed:
  • Melnykov, Volodymyr
  • Melnykov, Igor

Abstract

An approach is proposed for initializing the expectation–maximization (EM) algorithm in multivariate Gaussian mixture models with an unknown number of components. As the EM algorithm is often sensitive to the choice of the initial parameter vector, efficient initialization is an important preliminary process for the future convergence of the algorithm to the best local maximum of the likelihood function. We propose a strategy initializing mean vectors by choosing points with higher concentrations of neighbors and using a truncated normal distribution for the preliminary estimation of dispersion matrices. The suggested approach is illustrated on examples and compared with several other initialization methods.

Suggested Citation

  • Melnykov, Volodymyr & Melnykov, Igor, 2012. "Initializing the EM algorithm in Gaussian mixture models with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1381-1395.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1381-1395
    DOI: 10.1016/j.csda.2011.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311003963
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrews, Jeffrey L. & McNicholas, Paul D. & Subedi, Sanjeena, 2011. "Model-based classification via mixtures of multivariate t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 520-529, January.
    2. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    3. Kiefer, Nicholas M, 1978. "Discrete Parameter Variation: Efficient Estimation of a Switching Regression Model," Econometrica, Econometric Society, vol. 46(2), pages 427-434, March.
    4. Biernacki, Christophe & Celeux, Gilles & Govaert, Gerard, 2003. "Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 561-575, January.
    5. Karlis, Dimitris & Xekalaki, Evdokia, 2003. "Choosing initial values for the EM algorithm for finite mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 577-590, January.
    6. Li, Jia & Zha, Hongyuan, 2006. "Two-way Poisson mixture models for simultaneous document classification and word clustering," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 163-180, January.
    7. McGrory, C.A. & Titterington, D.M., 2007. "Variational approximations in Bayesian model selection for finite mixture distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5352-5367, July.
    8. G. J. McLachlan, 1987. "On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 318-324, November.
    9. Bouveyron, C. & Girard, S. & Schmid, C., 2007. "High-dimensional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 502-519, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouveyron, Charles & Brunet-Saumard, Camille, 2014. "Model-based clustering of high-dimensional data: A review," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 52-78.
    2. Yoichi Miyata & Takayuki Shiohama & Toshihiro Abe, 2020. "Estimation of finite mixture models of skew-symmetric circular distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(8), pages 895-922, November.
    3. Luca Scrucca & Adrian Raftery, 2015. "Improved initialisation of model-based clustering using Gaussian hierarchical partitions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 447-460, December.
    4. Wan-Lun Wang & Luis M. Castro & Wan-Chen Hsieh & Tsung-I Lin, 2021. "Mixtures of factor analyzers with covariates for modeling multiply censored dependent variables," Statistical Papers, Springer, vol. 62(5), pages 2119-2145, October.
    5. Ye Tian & Yasunari Yokota, 2019. "Estimating the Major Cluster by Mean-Shift with Updating Kernel," Mathematics, MDPI, vol. 7(9), pages 1-25, August.
    6. Morris, Katherine & Punzo, Antonio & McNicholas, Paul D. & Browne, Ryan P., 2019. "Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 145-166.
    7. Galimberti, Giuliano & Soffritti, Gabriele, 2014. "A multivariate linear regression analysis using finite mixtures of t distributions," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 138-150.
    8. Semhar Michael & Volodymyr Melnykov, 2016. "Finite Mixture Modeling of Gaussian Regression Time Series with Application to Dendrochronology," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 412-441, October.
    9. Shiow-Lan Gau & Jean Dieu Tapsoba & Shen-Ming Lee, 2014. "Bayesian approach for mixture models with grouped data," Computational Statistics, Springer, vol. 29(5), pages 1025-1043, October.
    10. Volodymyr Melnykov, 2013. "Finite mixture modelling in mass spectrometry analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 573-592, August.
    11. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    12. Lin, Tsung-I & McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Extending mixtures of factor models using the restricted multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 398-413.
    13. Volodymyr Melnykov & Xuwen Zhu, 2019. "An extension of the K-means algorithm to clustering skewed data," Computational Statistics, Springer, vol. 34(1), pages 373-394, March.
    14. Branislav Panić & Jernej Klemenc & Marko Nagode, 2020. "Optimizing the Estimation of a Histogram-Bin Width—Application to the Multivariate Mixture-Model Estimation," Mathematics, MDPI, vol. 8(7), pages 1-30, July.
    15. Semhar Michael & Volodymyr Melnykov, 2016. "An effective strategy for initializing the EM algorithm in finite mixture models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 563-583, December.
    16. Xu, Wenjing & Pan, Qing & Gastwirth, Joseph L., 2014. "Cox proportional hazards models with frailty for negatively correlated employment processes," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 295-307.
    17. Antonello Maruotti & Antonio Punzo, 2021. "Initialization of Hidden Markov and Semi‐Markov Models: A Critical Evaluation of Several Strategies," International Statistical Review, International Statistical Institute, vol. 89(3), pages 447-480, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Derek S. Young & Xi Chen & Dilrukshi C. Hewage & Ricardo Nilo-Poyanco, 2019. "Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1053-1082, December.
    2. Sanjeena Subedi & Paul McNicholas, 2014. "Variational Bayes approximations for clustering via mixtures of normal inverse Gaussian distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(2), pages 167-193, June.
    3. Andrews, Jeffrey L., 2018. "Addressing overfitting and underfitting in Gaussian model-based clustering," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 160-171.
    4. Adrian O’Hagan & Arthur White, 2019. "Improved model-based clustering performance using Bayesian initialization averaging," Computational Statistics, Springer, vol. 34(1), pages 201-231, March.
    5. Hung Tong & Cristina Tortora, 2022. "Model-based clustering and outlier detection with missing data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 5-30, March.
    6. Morris, Katherine & Punzo, Antonio & McNicholas, Paul D. & Browne, Ryan P., 2019. "Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 145-166.
    7. Sanjeena Subedi & Antonio Punzo & Salvatore Ingrassia & Paul McNicholas, 2013. "Clustering and classification via cluster-weighted factor analyzers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(1), pages 5-40, March.
    8. Gabriele Perrone & Gabriele Soffritti, 2023. "Seemingly unrelated clusterwise linear regression for contaminated data," Statistical Papers, Springer, vol. 64(3), pages 883-921, June.
    9. Alex Sharp & Glen Chalatov & Ryan P. Browne, 2023. "A dual subspace parsimonious mixture of matrix normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 801-822, September.
    10. Lin, Tsung-I & McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Extending mixtures of factor models using the restricted multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 398-413.
    11. Melnykov, Volodymyr, 2013. "On the distribution of posterior probabilities in finite mixture models with application in clustering," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 175-189.
    12. O’Hagan, Adrian & Murphy, Thomas Brendan & Gormley, Isobel Claire, 2012. "Computational aspects of fitting mixture models via the expectation–maximization algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3843-3864.
    13. Melnykov, Volodymyr & Zhu, Xuwen, 2018. "On model-based clustering of skewed matrix data," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 181-194.
    14. Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
    15. Yuhong Wei & Paul McNicholas, 2015. "Mixture model averaging for clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(2), pages 197-217, June.
    16. Angelo Mazza & Antonio Punzo, 2020. "Mixtures of multivariate contaminated normal regression models," Statistical Papers, Springer, vol. 61(2), pages 787-822, April.
    17. Luis Angel García-Escudero & Alfonso Gordaliza & Francesca Greselin & Salvatore Ingrassia & Agustín Mayo-Iscar, 2018. "Eigenvalues and constraints in mixture modeling: geometric and computational issues," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 203-233, June.
    18. Wan-Lun Wang & Tsung-I Lin, 2022. "Robust clustering of multiply censored data via mixtures of t factor analyzers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 22-53, March.
    19. Vrbik, Irene & McNicholas, Paul D., 2014. "Parsimonious skew mixture models for model-based clustering and classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 196-210.
    20. Irene Vrbik & Paul McNicholas, 2015. "Fractionally-Supervised Classification," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 359-381, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1381-1395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.