IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v69y2014icp114-121.html
   My bibliography  Save this article

A GEE approach to determine sample size for pre- and post-intervention experiments with dropout

Author

Listed:
  • Zhang, Song
  • Cao, Jing
  • Ahn, Chul

Abstract

Pre- and post-intervention experiments are widely used in medical and social behavioral studies, where each subject is supposed to contribute a pair of observations. In this paper we investigate sample size requirement for a scenario frequently encountered by practitioners: all enrolled subjects participate in the pre-intervention phase of study, but some of them will drop out due to various reasons, thus resulting in missing values in the post-intervention measurements. Traditional sample size calculation based on McNemar’s test could not accommodate missing data. Through the GEE approach, we derive a closed-form sample size formula that properly accounts for the impact of partial observations. We demonstrate that when there are no missing data, the proposed sample size estimate under the GEE approach is very close to that under McNemar’s test. When there are missing data, the proposed method can lead to substantial saving in sample size. Simulation studies and an example are presented.

Suggested Citation

  • Zhang, Song & Cao, Jing & Ahn, Chul, 2014. "A GEE approach to determine sample size for pre- and post-intervention experiments with dropout," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 114-121.
  • Handle: RePEc:eee:csdana:v:69:y:2014:i:c:p:114-121
    DOI: 10.1016/j.csda.2013.07.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731300282X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.07.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Quinn McNemar, 1947. "Note on the sampling error of the difference between correlated proportions or percentages," Psychometrika, Springer;The Psychometric Society, vol. 12(2), pages 153-157, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uttam Bandyopadhyay & Atanu Biswas & Shirsendu Mukherjee, 2009. "Adaptive two-treatment two-period crossover design for binary treatment responses incorporating carry-over effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 13-33, March.
    2. Preety Srivastava & Xueyan Zhao, 2010. "What Do the Bingers Drink? Micro‐Unit Evidence on Negative Externalities and Drinker Characteristics of Alcohol Consumption by Beverage Types," Economic Papers, The Economic Society of Australia, vol. 29(2), pages 229-250, June.
    3. Holger Schwender & Margaret A. Taub & Terri H. Beaty & Mary L. Marazita & Ingo Ruczinski, 2012. "Rapid Testing of SNPs and Gene–Environment Interactions in Case–Parent Trio Data Based on Exact Analytic Parameter Estimation," Biometrics, The International Biometric Society, vol. 68(3), pages 766-773, September.
    4. Matysková, Ludmila & Rogers, Brian & Steiner, Jakub & Sun, Keh-Kuan, 2020. "Habits as adaptations: An experimental study," Games and Economic Behavior, Elsevier, vol. 122(C), pages 391-406.
    5. André, Kévin, 2013. "Applying the Capability Approach to the French Education System: An Assessment of the "Pourquoi pas moi ?"," ESSEC Working Papers WP1316, ESSEC Research Center, ESSEC Business School.
    6. Ruiz-Frau, A. & Krause, T. & Marbà, N., 2018. "The use of sociocultural valuation in sustainable environmental management," Ecosystem Services, Elsevier, vol. 29(PA), pages 158-167.
    7. AlMalki, Hameeda A. & Durugbo, Christopher M., 2023. "Evaluating critical institutional factors of Industry 4.0 for education reform," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    8. Guevara, C. Angelo & Fukushi, Mitsuyoshi, 2016. "Modeling the decoy effect with context-RUM Models: Diagrammatic analysis and empirical evidence from route choice SP and mode choice RP case studies," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 318-337.
    9. Melo, Grace & Palma, Marco A. & Ribera, Luis A., 2024. "Are experts overoptimistic about the success of food market labeling information?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343870, Agricultural and Applied Economics Association.
    10. Alexandra I. Khalyasmaa & Pavel V. Matrenin & Stanislav A. Eroshenko & Vadim Z. Manusov & Andrey M. Bramm & Alexey M. Romanov, 2022. "Data Mining Applied to Decision Support Systems for Power Transformers’ Health Diagnostics," Mathematics, MDPI, vol. 10(14), pages 1-25, July.
    11. Arnaldo Rabello de Aguiar Vallim Filho & Daniel Farina Moraes & Marco Vinicius Bhering de Aguiar Vallim & Leilton Santos da Silva & Leandro Augusto da Silva, 2022. "A Machine Learning Modeling Framework for Predictive Maintenance Based on Equipment Load Cycle: An Application in a Real World Case," Energies, MDPI, vol. 15(10), pages 1-41, May.
    12. Alireza Taheri Dehkordi & Mohammad Javad Valadan Zoej & Hani Ghasemi & Ebrahim Ghaderpour & Quazi K. Hassan, 2022. "A New Clustering Method to Generate Training Samples for Supervised Monitoring of Long-Term Water Surface Dynamics Using Landsat Data through Google Earth Engine," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    13. Lahtinen, Tuomas J. & Hämäläinen, Raimo P., 2016. "Path dependence and biases in the even swaps decision analysis method," European Journal of Operational Research, Elsevier, vol. 249(3), pages 890-898.
    14. Mei-Cheng Wang & Yuxin Zhu, 2022. "Bias correction via outcome reassignment for cross-sectional data with binary disease outcome," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 659-674, October.
    15. Hansen, J. W. & Jones, J. W., 1996. "A systems framework for characterizing farm sustainability," Agricultural Systems, Elsevier, vol. 51(2), pages 185-201, June.
    16. Franko Hržić & Sebastian Tschauner & Erich Sorantin & Ivan Štajduhar, 2022. "Fracture Recognition in Paediatric Wrist Radiographs: An Object Detection Approach," Mathematics, MDPI, vol. 10(16), pages 1-23, August.
    17. Monnery, Benjamin & Wolff, François-Charles & Henneguelle, Anaïs, 2020. "Prison, semi-liberty and recidivism: Bounding causal effects in a survival model," International Review of Law and Economics, Elsevier, vol. 61(C).
    18. Haikady N Nagaraja & Shane Sanders, 2020. "The aggregation paradox for statistical rankings and nonparametric tests," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    19. Kévin André, 2013. "Applying the Capability Approach to the French Education System: An Assessment of the "Pourquoi pas moi ?" Programme," Working Papers hal-00880246, HAL.
    20. Wen, Xiao & Ranjbari, Andisheh & Qi, Fan & Clewlow, Regina R. & MacKenzie, Don, 2021. "Challenges in credibly estimating the travel demand effects of mobility services," Transport Policy, Elsevier, vol. 103(C), pages 224-235.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:69:y:2014:i:c:p:114-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.