IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v67y2013icp95-104.html
   My bibliography  Save this article

A method for detecting hidden additivity in two-factor unreplicated experiments

Author

Listed:
  • Franck, Christopher T.
  • Nielsen, Dahlia M.
  • Osborne, Jason A.

Abstract

Assessment of interaction in unreplicated two-factor experiments is a challenging problem that has received considerable attention in the literature. A model is proposed in which the levels of one factor belong in two or more groups. Within each group the effects of the two factors are additive but the groups may interact with the ungrouped factor. This structure is called “hidden additivity” if group membership is latent. To identify plausible groupings a search is performed over the space of all possible configurations, or placement of units into two or more groups. A multiplicity-adjusted all-configurations maximum interaction F (ACMIF) test to detect hidden additivity is developed. The method is illustrated using two data sets taken from the literature and a third taken from a recent study of copy number variation due to lymphoma. A simulation study demonstrates the power of the test for hidden additivity and compares it with other well-known tests from the literature.

Suggested Citation

  • Franck, Christopher T. & Nielsen, Dahlia M. & Osborne, Jason A., 2013. "A method for detecting hidden additivity in two-factor unreplicated experiments," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 95-104.
  • Handle: RePEc:eee:csdana:v:67:y:2013:i:c:p:95-104
    DOI: 10.1016/j.csda.2013.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313001618
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tusell, Fernando, 1990. "Testing for interaction in two-way ANOVA tables with no replication," Computational Statistics & Data Analysis, Elsevier, vol. 10(1), pages 29-45, August.
    2. Harry Gollob, 1968. "A statistical model which combines features of factor analytic and analysis of variance techniques," Psychometrika, Springer;The Psychometric Society, vol. 33(1), pages 73-115, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zaheer Ahmed & Alberto Cassese & Gerard Breukelen & Jan Schepers, 2021. "REMAXINT: a two-mode clustering-based method for statistical inference on two-way interaction," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 987-1013, December.
    2. Zaheer Ahmed & Alberto Cassese & Gerard Breukelen & Jan Schepers, 2023. "E-ReMI: Extended Maximal Interaction Two-mode Clustering," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 298-331, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahakpaz, Farhad & Abdi, Hossein & Neyestani, Elyas & Hesami, Ali & Mohammadi, Behrouz & Mahmoudi, Kourosh Nader & Abedi-Asl, Gholamreza & Noshabadi, Mohammad Reza Jazayeri & Ahakpaz, Farzad & Alipour,, 2021. "Genotype-by-environment interaction analysis for grain yield of barley genotypes under dryland conditions and the role of monthly rainfall," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Choulakian, Vartan, 2005. "Transposition invariant principal component analysis in L1 for long tailed data," Statistics & Probability Letters, Elsevier, vol. 71(1), pages 23-31, January.
    3. Griffin, Maryclare & Hoff, Peter D., 2019. "Lasso ANOVA decompositions for matrix and tensor data," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 181-194.
    4. Kamila Nowosad & Jan Bocianowski & Farzad Kianersi & Alireza Pour-Aboughadareh, 2023. "Analysis of Linkage on Interaction of Main Aspects (Genotype by Environment Interaction, Stability and Genetic Parameters) of 1000 Kernels in Maize ( Zea mays L.)," Agriculture, MDPI, vol. 13(10), pages 1-17, October.
    5. Odette D. Weedon & Maria R. Finckh, 2019. "Heterogeneous Winter Wheat Populations Differ in Yield Stability Depending on their Genetic Background and Management System," Sustainability, MDPI, vol. 11(21), pages 1-20, November.
    6. Mark Appelbaum, 1986. "Statistics, data analysis and Psychometrika: Major developments," Psychometrika, Springer;The Psychometric Society, vol. 51(1), pages 53-56, March.
    7. repec:jss:jstsof:34:i10 is not listed on IDEAS
    8. Yoshio Takane & Tadashi Shibayama, 1991. "Principal component analysis with external information on both subjects and variables," Psychometrika, Springer;The Psychometric Society, vol. 56(1), pages 97-120, March.
    9. Erik Schwarzbach & Jiří Hartmann & Hans-Peter Piepho, 2007. "Multiplicative main cultivar effects in Czech official winter wheat trials 1976-2005," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 43(4), pages 117-124.
    10. John C. Gower & Sugnet Gardner-Lubbe & Niel J. Le Roux, 2018. "Interaction: Fisher’s Optimal Scores Revisited," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 92-112, March.
    11. Groenen, P.J.F. & Koning, A.J., 2004. "A new model for visualizing interactions in analysis of variance," Econometric Institute Research Papers EI 2004-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Jan Schepers & Hans-Hermann Bock & Iven Mechelen, 2017. "Maximal Interaction Two-Mode Clustering," Journal of Classification, Springer;The Classification Society, vol. 34(1), pages 49-75, April.
    13. Brian Gin & Nicholas Sim & Anders Skrondal & Sophia Rabe-Hesketh, 2020. "A Dyadic IRT Model," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 815-836, September.
    14. Gordon Bechtel, 1973. "Nonlinear submodels of orthogonal linear models," Psychometrika, Springer;The Psychometric Society, vol. 38(3), pages 379-392, September.
    15. Johannes Forkman & Hans-Peter Piepho, 2014. "Parametric bootstrap methods for testing multiplicative terms in GGE and AMMI models," Biometrics, The International Biometric Society, vol. 70(3), pages 639-647, September.
    16. S. Hadasch & J. Forkman & W. A. Malik & H. P. Piepho, 2018. "Weighted Estimation of AMMI and GGE Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 255-275, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:67:y:2013:i:c:p:95-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.