IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v71y2005i1p23-31.html
   My bibliography  Save this article

Transposition invariant principal component analysis in L1 for long tailed data

Author

Listed:
  • Choulakian, Vartan

Abstract

Similar to the ordinary principal component analysis (PCA), we develop PCA in L1 satisfying an invariance property: The objective function, which is a matrix norm, is transposition invariant. The new method is robust and specifically useful for long-tailed data. An example is provided.

Suggested Citation

  • Choulakian, Vartan, 2005. "Transposition invariant principal component analysis in L1 for long tailed data," Statistics & Probability Letters, Elsevier, vol. 71(1), pages 23-31, January.
  • Handle: RePEc:eee:stapro:v:71:y:2005:i:1:p:23-31
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00279-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Phipps Arabie, 1991. "Was euclid an unnecessarily sophisticated psychologist?," Psychometrika, Springer;The Psychometric Society, vol. 56(4), pages 567-587, December.
    2. Choulakian, V., 2001. "Robust Q-mode principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 37(2), pages 135-150, August.
    3. Heiser, Willem J., 1987. "Correspondence analysis with least absolute residuals," Computational Statistics & Data Analysis, Elsevier, vol. 5(4), pages 337-356, September.
    4. Vartan Choulakian, 2003. "The optimality of the centroid method," Psychometrika, Springer;The Psychometric Society, vol. 68(3), pages 473-475, September.
    5. Harry Gollob, 1968. "A statistical model which combines features of factor analytic and analysis of variance techniques," Psychometrika, Springer;The Psychometric Society, vol. 33(1), pages 73-115, March.
    6. Galpin, Jacqueline S. & Hawkins, Douglas M., 1987. "Methods of L1 estimation of a covariance matrix," Computational Statistics & Data Analysis, Elsevier, vol. 5(4), pages 305-319, September.
    7. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Choulakian, V., 2006. "L1-norm projection pursuit principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1441-1451, March.
    2. Choulakian, V. & Allard, J. & Almhana, J., 2006. "Robust centroid method," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 737-746, November.
    3. Vartan Choulakian & Jules Tibeiro, 2013. "Graph Partitioning by Correspondence Analysis and Taxicab Correspondence Analysis," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 397-427, October.
    4. T. F. Cox & D. S. Arnold, 2018. "Simple components," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 83-99, January.
    5. Vartan Choulakian & Biagio Simonetti & Thu Pham Gia, 2014. "Some new aspects of taxicab correspondence analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 401-416, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choulakian, V. & Allard, J. & Almhana, J., 2006. "Robust centroid method," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 737-746, November.
    2. Choulakian, V., 2006. "L1-norm projection pursuit principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1441-1451, March.
    3. Li, Baibing, 2006. "Sign eigenanalysis and its applications to optimization problems and robust statistics," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 154-162, January.
    4. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    5. Choulakian, V., 2001. "Robust Q-mode principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 37(2), pages 135-150, August.
    6. Brooks, J.P. & Dulá, J.H. & Boone, E.L., 2013. "A pure L1-norm principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 83-98.
    7. T. F. Cox & D. S. Arnold, 2018. "Simple components," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 83-99, January.
    8. Ehtibar Dzhafarov & Hans Colonius, 2006. "Reconstructing Distances among Objects from Their Discriminability," Psychometrika, Springer;The Psychometric Society, vol. 71(2), pages 365-386, June.
    9. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    10. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    11. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    12. Paschalis Arvanitidis & Athina Economou & Christos Kollias, 2016. "Terrorism’s effects on social capital in European countries," Public Choice, Springer, vol. 169(3), pages 231-250, December.
    13. Rizvi, Syed Kumail Abbas & Rahat, Birjees & Naqvi, Bushra & Umar, Muhammad, 2024. "Revolutionizing finance: The synergy of fintech, digital adoption, and innovation," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    14. Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2024. "Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia," Resources, MDPI, vol. 13(3), pages 1-18, March.
    15. Weili Duan & Bin He & Daniel Nover & Guishan Yang & Wen Chen & Huifang Meng & Shan Zou & Chuanming Liu, 2016. "Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods," Sustainability, MDPI, vol. 8(2), pages 1-15, January.
    16. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org, revised May 2024.
    17. Patrick Groenen & Rudolf Mathar & Willem Heiser, 1995. "The majorization approach to multidimensional scaling for Minkowski distances," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 3-19, March.
    18. Cling, Jean-Pierre & Delecourt, Clément, 2022. "Interlinkages between the Sustainable Development Goals," World Development Perspectives, Elsevier, vol. 25(C).
    19. Hino, Hideitsu & Wakayama, Keigo & Murata, Noboru, 2013. "Entropy-based sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 105-114.
    20. Angelucci, Federica & Conforti, Piero, 2010. "Risk management and finance along value chains of Small Island Developing States. Evidence from the Caribbean and the Pacific," Food Policy, Elsevier, vol. 35(6), pages 565-575, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:71:y:2005:i:1:p:23-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.