IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v57y2013i1p262-270.html
   My bibliography  Save this article

A multivariate control quantile test using data depth

Author

Listed:
  • Liu, Zhenyu
  • Modarres, Reza
  • Yang, Mengta

Abstract

The objective of this article is to present a depth based multivariate control quantile test using statistically equivalent blocks (DSEBS). Given a random sample {x1,…,xm} of Rd-valued random vectors (d≥1) with a distribution function (DF) F, statistically equivalent blocks (SEBS), a multivariate generalization of the univariate sample spacings, can be constructed using a sequence of cutting functions hi(x) to order xi,i=1,…,m. DSEBS are data driven, center-outward layers of shells whose shapes reflect the underlying geometric features of the unknown distribution and provide a framework for selection and comparison of cutting functions. We propose a control quantile test, using DSEBS, to test the equality of two DFs in Rd. The proposed test is distribution free under the null hypothesis and well defined when d≥max(m,n). A simulation study compares the proposed statistic to depth-based Wilcoxon rank sum test. We show that the new test is powerful in detecting the differences in location, scale and shape (skewness or kurtosis) changes in two multivariate distributions.

Suggested Citation

  • Liu, Zhenyu & Modarres, Reza & Yang, Mengta, 2013. "A multivariate control quantile test using data depth," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 262-270.
  • Handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:262-270
    DOI: 10.1016/j.csda.2012.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731200254X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhenyu Liu & Reza Modarres, 2011. "Lens data depth and median," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(4), pages 1063-1074.
    2. López-Pintado, Sara & Romo, Juan, 2009. "On the Concept of Depth for Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 718-734.
    3. Lopez-Pintado, Sara & Romo, Juan, 2007. "Depth-based inference for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4957-4968, June.
    4. Cuesta-Albertos, J.A. & Nieto-Reyes, A., 2008. "The random Tukey depth," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4979-4988, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Modarres, Reza, 2014. "On the interpoint distances of Bernoulli vectors," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 215-222.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. López-Pintado, Sara & Romo, Juan, 2011. "A half-region depth for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1679-1695, April.
    2. Carlo Sguera & Sara López-Pintado, 2021. "A notion of depth for sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 630-649, September.
    3. Francesca Ieva & Anna Paganoni, 2015. "Discussion of “multivariate functional outlier detection” by M. Hubert, P. Rousseeuw and P. Segaert," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 217-221, July.
    4. repec:cte:wsrepe:24606 is not listed on IDEAS
    5. Daniel Kosiorowski & Dominik Mielczarek & Jerzy. P. Rydlewski, 2017. "Forecasting of a Hierarchical Functional Time Series on Example of Macromodel for Day and Night Air Pollution in Silesia Region: A Critical Overview," Papers 1712.03797, arXiv.org.
    6. Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
    7. Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    8. Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
    9. Alba M. Franco-Pereira & Rosa E. Lillo, 2020. "Rank tests for functional data based on the epigraph, the hypograph and associated graphical representations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 651-676, September.
    10. Dalia Valencia & Rosa E. Lillo & Juan Romo, 2019. "A Kendall correlation coefficient between functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1083-1103, December.
    11. Daniel Kosiorowski & Jerzy P. Rydlewski & Małgorzata Snarska, 2019. "Detecting a structural change in functional time series using local Wilcoxon statistic," Statistical Papers, Springer, vol. 60(5), pages 1677-1698, October.
    12. Daniel Kosiorowski & Jerzy P. Rydlewski & Ma{l}gorzata Snarska, 2016. "Detecting a Structural Change in Functional Time Series Using Local Wilcoxon Statistic," Papers 1604.03776, arXiv.org, revised Oct 2019.
    13. Davy Paindaveine & Germain Van Bever, 2017. "Halfspace Depths for Scatter, Concentration and Shape Matrices," Working Papers ECARES ECARES 2017-19, ULB -- Universite Libre de Bruxelles.
    14. Sara López-Pintado & Ying Sun & Juan Lin & Marc Genton, 2014. "Simplicial band depth for multivariate functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 321-338, September.
    15. Serfling, Robert & Wijesuriya, Uditha, 2017. "Depth-based nonparametric description of functional data, with emphasis on use of spatial depth," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 24-45.
    16. Daniel Kosiorowski & Dominik Mielczarek & Jerzy P. Rydlewski, 2018. "Forecasting of a Hierarchical Functional Time Series on Example of Macromodel for the Day and Night Air Pollution in Silesia Region - A Critical Overview," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 53-73, March.
    17. repec:cte:wsrepe:ws133228 is not listed on IDEAS
    18. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    19. Cleveland, Jason & Zhao, Weilong & Wu, Wei, 2018. "Robust template estimation for functional data with phase variability using band depth," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 10-26.
    20. Fraiman, Ricardo & Pateiro-López, Beatriz, 2012. "Quantiles for finite and infinite dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 1-14.
    21. repec:cte:wsrepe:24615 is not listed on IDEAS
    22. Alicia Nieto-Reyes & Heather Battey & Giacomo Francisci, 2021. "Functional Symmetry and Statistical Depth for the Analysis of Movement Patterns in Alzheimer’s Patients," Mathematics, MDPI, vol. 9(8), pages 1-17, April.
    23. Tian, Yahui & Gel, Yulia R., 2019. "Fusing data depth with complex networks: Community detection with prior information," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 99-116.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:262-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.