IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i9p2782-2794.html
   My bibliography  Save this article

Robust descriptive discriminant analysis for repeated measures data

Author

Listed:
  • Sajobi, Tolulope T.
  • Lix, Lisa M.
  • Dansu, Bolanle M.
  • Laverty, William
  • Li, Longhai

Abstract

Discriminant analysis (DA) procedures based on parsimonious mean and/or covariance structures have recently been proposed for repeated measures data. However, these procedures rest on the assumption of a multivariate normal distribution. This study examines repeated measures DA (RMDA) procedures based on maximum likelihood (ML) and coordinatewise trimming (CT) estimation methods and investigates bias and root mean square error (RMSE) in discriminant function coefficients (DFCs) using Monte Carlo techniques. Study parameters include population distribution, covariance structure, sample size, mean configuration, and number of repeated measurements. The results show that for ML estimation, bias in DFC estimates was usually largest when the data were normally distributed, but there was no consistent trend in RMSE. For non-normal distributions, the average bias of CT estimates for procedures that assume unstructured group means and structured covariances was at least 40% smaller than the values for corresponding procedures based on ML estimators. The average RMSE for the former procedures was at least 10% smaller than the average RMSE for the latter procedures, but only when the data were sampled from extremely skewed or heavy-tailed distributions. This finding was observed even when the covariance and mean structures of the RMDA procedure were mis-specified. The proposed robust procedures can be used to identify measurement occasions that make the largest contribution to group separation when the data are sampled from multivariate skewed or heavy-tailed distributions.

Suggested Citation

  • Sajobi, Tolulope T. & Lix, Lisa M. & Dansu, Bolanle M. & Laverty, William & Li, Longhai, 2012. "Robust descriptive discriminant analysis for repeated measures data," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2782-2794.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:9:p:2782-2794
    DOI: 10.1016/j.csda.2012.02.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312001119
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.02.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hadi, Ali S. & Luceno, Alberto, 1997. "Maximum trimmed likelihood estimators: a unified approach, examples, and algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 25(3), pages 251-272, August.
    2. Stefan Van Aelst & Gert Willems, 2010. "Inference for robust canonical variate analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 181-197, September.
    3. N. A. Campbell, 1982. "Robust Procedures in Multivariate Analysis II. Robust Canonical Variate Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(1), pages 1-8, March.
    4. Hubert, Mia & Van Driessen, Katrien, 2004. "Fast and robust discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 301-320, March.
    5. Todorov, Valentin & Neykov, Neyko & Neytchev, Plamen, 1994. "Robust two-group discrimination by bounded influence regression. A Monte Carlo simulation," Computational Statistics & Data Analysis, Elsevier, vol. 17(3), pages 289-302, March.
    6. Neykov, N. & Filzmoser, P. & Dimova, R. & Neytchev, P., 2007. "Robust fitting of mixtures using the trimmed likelihood estimator," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 299-308, September.
    7. He, Xuming & Fung, Wing K., 2000. "High Breakdown Estimation for Multiple Populations with Applications to Discriminant Analysis," Journal of Multivariate Analysis, Elsevier, vol. 72(2), pages 151-162, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pires, Ana M. & Branco, João A., 2010. "Projection-pursuit approach to robust linear discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2464-2485, November.
    2. Todorov, Valentin & Filzmoser, Peter, 2010. "Robust statistic for the one-way MANOVA," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 37-48, January.
    3. Valentin Todorov, 2007. "Robust selection of variables in linear discriminant analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 395-407, February.
    4. Todorov, Valentin & Filzmoser, Peter, 2009. "An Object-Oriented Framework for Robust Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i03).
    5. Md. Matiur Rahaman & Md. Nurul Haque Mollah, 2019. "Robustification of Gaussian Bayes Classifier by the Minimum β-Divergence Method," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 113-139, April.
    6. Valentin Todorov, 2007. "Robust selection of variables in linear discriminant analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 395-407, February.
    7. A. Pedro Duarte Silva & Peter Filzmoser & Paula Brito, 2018. "Outlier detection in interval data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 785-822, September.
    8. Chalabi, Yohan / Y. & Wuertz, Diethelm, 2010. "Weighted trimmed likelihood estimator for GARCH models," MPRA Paper 26536, University Library of Munich, Germany.
    9. Cheng, Tsung-Chi, 2011. "Robust diagnostics for the heteroscedastic regression model," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1845-1866, April.
    10. Mia Hubert & Stephan Van der Veeken, 2010. "Robust classification for skewed data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(4), pages 239-254, December.
    11. Matías Salibián-Barrera & Stefan Aelst & Gert Willems, 2008. "Fast and robust bootstrap," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(1), pages 41-71, February.
    12. Croux, Christophe & Joossens, Kristel, 2005. "Influence of observations on the misclassification probability in quadratic discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 384-403, October.
    13. Stefan Van Aelst & Gert Willems, 2010. "Inference for robust canonical variate analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 181-197, September.
    14. Peter Filzmoser & Karel Hron & Matthias Templ, 2012. "Discriminant analysis for compositional data and robust parameter estimation," Computational Statistics, Springer, vol. 27(4), pages 585-604, December.
    15. Chun-Na Li & Pei-Wei Ren & Yan-Ru Guo & Ya-Fen Ye & Yuan-Hai Shao, 2024. "Regularized linear discriminant analysis based on generalized capped $$l_{2,q}$$ l 2 , q -norm," Annals of Operations Research, Springer, vol. 339(3), pages 1433-1459, August.
    16. Claudio Agostinelli & Luca Greco, 2019. "Weighted likelihood estimation of multivariate location and scatter," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 756-784, September.
    17. repec:jss:jstsof:32:i03 is not listed on IDEAS
    18. Čížek, Pavel, 2008. "General Trimmed Estimation: Robust Approach To Nonlinear And Limited Dependent Variable Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1500-1529, December.
    19. repec:cep:stiecm:/2014/572 is not listed on IDEAS
    20. Yao, Weixin & Wei, Yan & Yu, Chun, 2014. "Robust mixture regression using the t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 116-127.
    21. L. García-Escudero & A. Gordaliza & A. Mayo-Iscar, 2013. "Comments on: model-based clustering and classification with non-normal mixture distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 459-461, November.
    22. Huang, Yufen & Cheng, Ching-Ren & Wang, Tai-Ho, 2008. "Pair-perturbation influence functions of nongaussianity by projection pursuit," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 3971-3987, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:9:p:2782-2794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.