IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i1p37-48.html
   My bibliography  Save this article

Robust statistic for the one-way MANOVA

Author

Listed:
  • Todorov, Valentin
  • Filzmoser, Peter

Abstract

The Wilks' Lambda Statistic (likelihood ratio test, LRT) is a commonly used tool for inference about the mean vectors of several multivariate normal populations. However, it is well known that the Wilks' Lambda statistic which is based on the classical normal theory estimates of generalized dispersions, is extremely sensitive to the influence of outliers. A robust multivariate statistic for the one-way MANOVA based on the Minimum Covariance Determinant (MCD) estimator will be presented. The classical Wilks' Lambda statistic is modified into a robust one through substituting the classical estimates by the highly robust and efficient reweighted MCD estimates. Monte Carlo simulations are used to evaluate the performance of the test statistic under various distributions in terms of the simulated significance levels, its power functions and robustness. The power of the robust and classical statistics is compared using size-power curves, for the construction of which no knowledge about the distribution of the statistics is necessary. As a real data application the mean vectors of an ecogeochemical data set are examined.

Suggested Citation

  • Todorov, Valentin & Filzmoser, Peter, 2010. "Robust statistic for the one-way MANOVA," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 37-48, January.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:1:p:37-48
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00309-0
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valentin Todorov, 2007. "Robust selection of variables in linear discriminant analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 395-407, February.
    2. Valentin Todorov, 2007. "Robust selection of variables in linear discriminant analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 395-407, February.
    3. Davidson, Russell & MacKinnon, James G, 1998. "Graphical Methods for Investigating the Size and Power of Hypothesis Tests," The Manchester School of Economic & Social Studies, University of Manchester, vol. 66(1), pages 1-26, January.
    4. Gelper, Sarah & Croux, Christophe, 2007. "Multivariate out-of-sample tests for Granger causality," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3319-3329, April.
    5. Siani, Carole & de Peretti, Christian, 2007. "Analysing the performance of bootstrap neural tests for conditional heteroskedasticity in ARCH-M models," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2442-2460, February.
    6. Hubert, Mia & Van Driessen, Katrien, 2004. "Fast and robust discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 301-320, March.
    7. Nath, Ravinder & Pavur, Robert, 1985. "A new statistic in the one-way multivariate analysis of variance," Computational Statistics & Data Analysis, Elsevier, vol. 2(4), pages 297-315, February.
    8. Todorov, Valentin & Neykov, Neyko & Neytchev, Plamen, 1994. "Robust two-group discrimination by bounded influence regression. A Monte Carlo simulation," Computational Statistics & Data Analysis, Elsevier, vol. 17(3), pages 289-302, March.
    9. He, Xuming & Fung, Wing K., 2000. "High Breakdown Estimation for Multiple Populations with Applications to Discriminant Analysis," Journal of Multivariate Analysis, Elsevier, vol. 72(2), pages 151-162, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cerioli, Andrea & Farcomeni, Alessio, 2011. "Error rates for multivariate outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 544-553, January.
    2. Sheng Lu, 2022. "Explore U.S. Retailers’ Sourcing Strategies for Clothing Made from Recycled Textile Materials," Sustainability, MDPI, vol. 15(1), pages 1-13, December.
    3. Todorov, Valentin & Filzmoser, Peter, 2009. "An Object-Oriented Framework for Robust Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i03).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Todorov, Valentin & Filzmoser, Peter, 2009. "An Object-Oriented Framework for Robust Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i03).
    2. Md. Matiur Rahaman & Md. Nurul Haque Mollah, 2019. "Robustification of Gaussian Bayes Classifier by the Minimum β-Divergence Method," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 113-139, April.
    3. Valentin Todorov, 2007. "Robust selection of variables in linear discriminant analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 395-407, February.
    4. Valentin Todorov, 2007. "Robust selection of variables in linear discriminant analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 395-407, February.
    5. Pires, Ana M. & Branco, João A., 2010. "Projection-pursuit approach to robust linear discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2464-2485, November.
    6. Sajobi, Tolulope T. & Lix, Lisa M. & Dansu, Bolanle M. & Laverty, William & Li, Longhai, 2012. "Robust descriptive discriminant analysis for repeated measures data," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2782-2794.
    7. Gelper, Sarah & Croux, Christophe, 2007. "Multivariate out-of-sample tests for Granger causality," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3319-3329, April.
    8. Mia Hubert & Stephan Van der Veeken, 2010. "Robust classification for skewed data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(4), pages 239-254, December.
    9. Matías Salibián-Barrera & Stefan Aelst & Gert Willems, 2008. "Fast and robust bootstrap," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(1), pages 41-71, February.
    10. Croux, Christophe & Joossens, Kristel, 2005. "Influence of observations on the misclassification probability in quadratic discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 384-403, October.
    11. Stefan Van Aelst & Gert Willems, 2010. "Inference for robust canonical variate analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 181-197, September.
    12. Peter Filzmoser & Karel Hron & Matthias Templ, 2012. "Discriminant analysis for compositional data and robust parameter estimation," Computational Statistics, Springer, vol. 27(4), pages 585-604, December.
    13. Man Jin & Yixin Fang, 2011. "Variable Selection in Canonical Discriminant Analysis for Family Studies," Biometrics, The International Biometric Society, vol. 67(1), pages 124-132, March.
    14. Cappozzo, Andrea & Greselin, Francesca & Murphy, Thomas Brendan, 2021. "Robust variable selection for model-based learning in presence of adulteration," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    15. Chun-Na Li & Pei-Wei Ren & Yan-Ru Guo & Ya-Fen Ye & Yuan-Hai Shao, 2024. "Regularized linear discriminant analysis based on generalized capped $$l_{2,q}$$ l 2 , q -norm," Annals of Operations Research, Springer, vol. 339(3), pages 1433-1459, August.
    16. Claudio Agostinelli & Luca Greco, 2019. "Weighted likelihood estimation of multivariate location and scatter," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 756-784, September.
    17. repec:jss:jstsof:32:i03 is not listed on IDEAS
    18. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.
    19. Davidson, Russell & Flachaire, Emmanuel, 2007. "Asymptotic and bootstrap inference for inequality and poverty measures," Journal of Econometrics, Elsevier, vol. 141(1), pages 141-166, November.
    20. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    21. Christian Peretti, 2007. "Long Memory and Hysteresis," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 363-389, Springer.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:1:p:37-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.