IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v31y1982i1p1-8.html
   My bibliography  Save this article

Robust Procedures in Multivariate Analysis II. Robust Canonical Variate Analysis

Author

Listed:
  • N. A. Campbell

Abstract

Robust M‐estimation for canonical variate analysis is developed, based on a functional relationship model; the associated weights depend on the distance of an observation from the canonical variate mean for the group. For uncontaminated data, the robust M‐estimation procedure performs similarly to the usual canonical variate analysis. A typical data set is examined; the usual canonical vectors are little affected by the presence of atypical observations, though the canonical roots are considerably influenced.

Suggested Citation

  • N. A. Campbell, 1982. "Robust Procedures in Multivariate Analysis II. Robust Canonical Variate Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(1), pages 1-8, March.
  • Handle: RePEc:bla:jorssc:v:31:y:1982:i:1:p:1-8
    DOI: 10.2307/2347068
    as

    Download full text from publisher

    File URL: https://doi.org/10.2307/2347068
    Download Restriction: no

    File URL: https://libkey.io/10.2307/2347068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sajobi, Tolulope T. & Lix, Lisa M. & Dansu, Bolanle M. & Laverty, William & Li, Longhai, 2012. "Robust descriptive discriminant analysis for repeated measures data," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2782-2794.
    2. Peter Verboon & Ivo Lans, 1994. "Robust canonical discriminant analysis," Psychometrika, Springer;The Psychometric Society, vol. 59(4), pages 485-507, December.
    3. Kamiya, Hidehiko & Eguchi, Shinto, 2001. "A Class of Robust Principal Component Vectors," Journal of Multivariate Analysis, Elsevier, vol. 77(2), pages 239-269, May.
    4. Pires, Ana M. & Branco, João A., 2010. "Projection-pursuit approach to robust linear discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2464-2485, November.
    5. Kosinski, Andrzej S., 1998. "A procedure for the detection of multivariate outliers," Computational Statistics & Data Analysis, Elsevier, vol. 29(2), pages 145-161, December.
    6. Ke-Hai Yuan & Peter Bentler & Wai Chan, 2004. "Structural equation modeling with heavy tailed distributions," Psychometrika, Springer;The Psychometric Society, vol. 69(3), pages 421-436, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:31:y:1982:i:1:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.