IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i4p854-873.html
   My bibliography  Save this article

Consistency of support vector machines using additive kernels for additive models

Author

Listed:
  • Christmann, Andreas
  • Hable, Robert

Abstract

Support vector machines (SVMs) are special kernel based methods and have been among the most successful learning methods for more than a decade. SVMs can informally be described as kinds of regularized M-estimators for functions and have demonstrated their usefulness in many complicated real-life problems. During the last few years a great part of the statistical research on SVMs has concentrated on the question of how to design SVMs such that they are universally consistent and statistically robust for nonparametric classification or nonparametric regression purposes. In many applications, some qualitative prior knowledge of the distribution P or of the unknown function f to be estimated is present or a prediction function with good interpretability is desired, such that a semiparametric model or an additive model is of interest. The question of how to design SVMs by choosing the reproducing kernel Hilbert space (RKHS) or its corresponding kernel to obtain consistent and statistically robust estimators in additive models is addressed. An explicit construction of such RKHSs and their kernels, which will be called additive kernels, is given. SVMs based on additive kernels will be called additive support vector machines. The use of such additive kernels leads, in combination with a Lipschitz continuous loss function, to SVMs with the desired properties for additive models. Examples include quantile regression based on the pinball loss function, regression based on the ϵ-insensitive loss function, and classification based on the hinge loss function.

Suggested Citation

  • Christmann, Andreas & Hable, Robert, 2012. "Consistency of support vector machines using additive kernels for additive models," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 854-873.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:4:p:854-873
    DOI: 10.1016/j.csda.2011.04.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311001356
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.04.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferraty, Frédéric & Vieu, Philippe, 2009. "Additive prediction and boosting for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1400-1413, February.
    2. Schmid, Matthias & Hothorn, Torsten, 2008. "Boosting additive models using component-wise P-Splines," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 298-311, December.
    3. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    4. De Bock, Koen W. & Coussement, Kristof & Van den Poel, Dirk, 2010. "Ensemble classification based on generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1535-1546, June.
    5. Shafik, Nivien & Tutz, Gerhard, 2009. "Boosting nonlinear additive autoregressive time series," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2453-2464, May.
    6. Hable, Robert & Christmann, Andreas, 2011. "On qualitative robustness of support vector machines," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 993-1007, July.
    7. Tutz, Gerhard & Binder, Harald, 2007. "Boosting ridge regression," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6044-6059, August.
    8. Stephen M. Robinson, 1991. "An Implicit-Function Theorem for a Class of Nonsmooth Functions," Mathematics of Operations Research, INFORMS, vol. 16(2), pages 292-309, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Zhi-Ping & Sun, Minghe, 2016. "A multi-kernel support tensor machine for classification with multitype multiway data and an application to cross-selling recommendationsAuthor-Name: Chen, Zhen-Yu," European Journal of Operational Research, Elsevier, vol. 255(1), pages 110-120.
    2. Zhen-Yu Chen & Zhi-Ping Fan & Minghe Sun, 2014. "Ensemble Learning for Cross-Selling Using Multitype Multiway Data," Working Papers 0155mss, College of Business, University of Texas at San Antonio.
    3. Chen, Zhen-Yu & Fan, Zhi-Ping & Sun, Minghe, 2019. "Individual-level social influence identification in social media: A learning-simulation coordinated method," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1005-1015.
    4. Tao, Yanfang & Song, Biqin & Li, Luoqing, 2018. "Error analysis for coefficient-based regularized regression in additive models," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 22-28.
    5. Jian Shi & Benlian Xu, 2016. "Credit Scoring by Fuzzy Support Vector Machines with a Novel Membership Function," JRFM, MDPI, vol. 9(4), pages 1-10, November.
    6. Christophe Crambes & Ali Gannoun & Yousri Henchiri, 2014. "Modelling functional additive quantile regression using support vector machines approach," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(4), pages 639-668, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.
    2. Souhaib Ben Taieb & Rob J Hyndman, 2014. "Boosting multi-step autoregressive forecasts," Monash Econometrics and Business Statistics Working Papers 13/14, Monash University, Department of Econometrics and Business Statistics.
    3. Souhaib Ben Taieb & Raphael Huser & Rob J. Hyndman & Marc G. Genton, 2015. "Probabilistic time series forecasting with boosted additive models: an application to smart meter data," Monash Econometrics and Business Statistics Working Papers 12/15, Monash University, Department of Econometrics and Business Statistics.
    4. Sobotka, Fabian & Kneib, Thomas, 2012. "Geoadditive expectile regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 755-767.
    5. Christophe Crambes & Ali Gannoun & Yousri Henchiri, 2014. "Modelling functional additive quantile regression using support vector machines approach," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(4), pages 639-668, December.
    6. Nikolay Robinzonov & Gerhard Tutz & Torsten Hothorn, 2012. "Boosting techniques for nonlinear time series models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 99-122, January.
    7. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    8. Benjamin Hofner & Andreas Mayr & Nikolay Robinzonov & Matthias Schmid, 2014. "Model-based boosting in R: a hands-on tutorial using the R package mboost," Computational Statistics, Springer, vol. 29(1), pages 3-35, February.
    9. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    10. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    11. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    12. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    13. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    14. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    15. Klaus Friesenbichler, 2013. "Firm Growth in Conflict Countries: Some Evidence from South Asia," Review of Economics & Finance, Better Advances Press, Canada, vol. 3, pages 33-44, May.
    16. Chesher, Andrew, 2017. "Understanding the effect of measurement error on quantile regressions," Journal of Econometrics, Elsevier, vol. 200(2), pages 223-237.
    17. Park, Beum-Jo & Kim, Myung-Joong, 2017. "A Dynamic Measure of Intentional Herd Behavior in Financial Markets," MPRA Paper 82025, University Library of Munich, Germany.
    18. de Chaisemartin, Clement & D'Haultfoeuille, Xavier, "undated". "Supplement to Fuzzy Differences-in-Differences," Economic Research Papers 270217, University of Warwick - Department of Economics.
    19. Andrés Barge-Gil & Alberto López, 2015. "R versus D: estimating the differentiated effect of research and development on innovation results," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 24(1), pages 93-129.
    20. Kleopatra Nikolaou, 2007. "The behaviour of the real exchange rate: Evidence from regression quantiles," Money Macro and Finance (MMF) Research Group Conference 2006 46, Money Macro and Finance Research Group.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:4:p:854-873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.