IDEAS home Printed from https://ideas.repec.org/a/spr/metron/v77y2019i2d10.1007_s40300-019-00152-7.html
   My bibliography  Save this article

Estimation of Viterbi path in Bayesian hidden Markov models

Author

Listed:
  • Jüri Lember

    (University of Tartu)

  • Dario Gasbarra

    (University of Helsinki)

  • Alexey Koloydenko

    (Royal Holloway, University of London)

  • Kristi Kuljus

    (University of Tartu)

Abstract

The article studies different methods for estimating the Viterbi path in the Bayesian framework. The Viterbi path is an estimate of the underlying state path in hidden Markov models (HMMs), which has a maximum joint posterior probability. Hence it is also called the maximum a posteriori (MAP) path. For an HMM with given parameters, the Viterbi path can be easily found with the Viterbi algorithm. In the Bayesian framework the Viterbi algorithm is not applicable and several iterative methods can be used instead. We introduce a new EM-type algorithm for finding the MAP path and compare it with various other methods for finding the MAP path, including the variational Bayes approach and MCMC methods. Examples with simulated data are used to compare the performance of the methods. The main focus is on non-stochastic iterative methods and our results show that the best of those methods work as well or better than the best MCMC methods. Our results demonstrate that when the primary goal is segmentation, then it is more reasonable to perform segmentation directly by considering the transition and emission parameters as nuisance parameters.

Suggested Citation

  • Jüri Lember & Dario Gasbarra & Alexey Koloydenko & Kristi Kuljus, 2019. "Estimation of Viterbi path in Bayesian hidden Markov models," METRON, Springer;Sapienza Università di Roma, vol. 77(2), pages 137-169, August.
  • Handle: RePEc:spr:metron:v:77:y:2019:i:2:d:10.1007_s40300-019-00152-7
    DOI: 10.1007/s40300-019-00152-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40300-019-00152-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40300-019-00152-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/1906 is not listed on IDEAS
    2. Same, Allou & Ambroise, Christophe & Govaert, Gerard, 2006. "A classification EM algorithm for binned data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 466-480, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Bulla & Roland Langrock & Antonello Maruotti, 2019. "Guest editor’s introduction to the special issue on “Hidden Markov Models: Theory and Applications”," METRON, Springer;Sapienza Università di Roma, vol. 77(2), pages 63-66, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mukhopadhyay, Subhadeep & Ghosh, Anil K., 2011. "Bayesian multiscale smoothing in supervised and semi-supervised kernel discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2344-2353, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metron:v:77:y:2019:i:2:d:10.1007_s40300-019-00152-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.