IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i3p1379-1393.html
   My bibliography  Save this article

Bias and skewness in a general extreme-value regression model

Author

Listed:
  • Barreto-Souza, Wagner
  • Vasconcellos, Klaus L.P.

Abstract

In this paper we introduce a general extreme-value regression model and derive Cox and Snell's (1968) general formulae for second-order biases of maximum likelihood estimates (MLEs) of the parameters. We obtain formulae which can be computed by means of weighted linear regressions. Furthermore, we give the skewness of order n-1/2 of the maximum likelihood estimators of the parameters by using Bowman and Shenton's (1988) formula. A simulation study with results obtained with the use of Cox and Snell's (1968) formulae is discussed. Practical uses of this model and of the derived formulae for bias correction are also presented.

Suggested Citation

  • Barreto-Souza, Wagner & Vasconcellos, Klaus L.P., 2011. "Bias and skewness in a general extreme-value regression model," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1379-1393, March.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:3:p:1379-1393
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00371-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cordeiro, Gauss M. & Botter, Denise A., 2001. "Second-order biases of maximum likelihood estimates in overdispersed generalized linear models," Statistics & Probability Letters, Elsevier, vol. 55(3), pages 269-280, December.
    2. Chan, P.S. & Ng, H.K.T. & Balakrishnan, N. & Zhou, Q., 2008. "Point and interval estimation for extreme-value regression model under Type-II censoring," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 4040-4058, April.
    3. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    4. Ospina, Raydonal & Cribari-Neto, Francisco & Vasconcellos, Klaus L.P., 2006. "Improved point and interval estimation for a beta regression model," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 960-981, November.
    5. Cordeiro, Gauss M. & Vasconcellos, Klaus L. P., 1997. "Bias correction for a class of multivariate nonlinear regression models," Statistics & Probability Letters, Elsevier, vol. 35(2), pages 155-164, September.
    6. Simas, Alexandre B. & Barreto-Souza, Wagner & Rocha, Andréa V., 2010. "Improved estimators for a general class of beta regression models," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 348-366, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
    2. Cristine Rauber & Francisco Cribari-Neto & Fábio M. Bayer, 2020. "Improved testing inferences for beta regressions with parametric mean link function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 687-717, December.
    3. Pablo Mitnik & Sunyoung Baek, 2013. "The Kumaraswamy distribution: median-dispersion re-parameterizations for regression modeling and simulation-based estimation," Statistical Papers, Springer, vol. 54(1), pages 177-192, February.
    4. Guillermo Martínez-Flórez & Roger Tovar-Falón, 2021. "New Regression Models Based on the Unit-Sinh-Normal Distribution: Properties, Inference, and Applications," Mathematics, MDPI, vol. 9(11), pages 1-19, May.
    5. Yiyun Shou & Michael Smithson, 2015. "Evaluating Predictors of Dispersion: A Comparison of Dominance Analysis and Bayesian Model Averaging," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 236-256, March.
    6. Oscar Melo & Carlos Melo & Jorge Mateu, 2015. "Distance-based beta regression for prediction of mutual funds," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 83-106, January.
    7. Patriota, Alexandre G. & Lemonte, Artur J., 2009. "Bias correction in a multivariate normal regression model with general parameterization," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1655-1662, August.
    8. Weihua Zhao & Riquan Zhang & Yazhao Lv & Jicai Liu, 2014. "Variable selection for varying dispersion beta regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 95-108, January.
    9. Diego Ramos Canterle & Fábio Mariano Bayer, 2019. "Variable dispersion beta regressions with parametric link functions," Statistical Papers, Springer, vol. 60(5), pages 1541-1567, October.
    10. repec:jss:jstsof:34:i02 is not listed on IDEAS
    11. Wagner Hugo Bonat & Paulo Justiniano Ribeiro & Walmes Marques Zeviani, 2015. "Likelihood analysis for a class of beta mixed models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(2), pages 252-266, February.
    12. Di Caterina, Claudia & Kosmidis, Ioannis, 2019. "Location-adjusted Wald statistics for scalar parameters," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 126-142.
    13. Artur J. Lemonte & Germán Moreno–Arenas, 2020. "Improved Estimation for a New Class of Parametric Link Functions in Binary Regression," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 84-110, May.
    14. Marco Minozzo & Luca Bagnato, 2021. "A unified skew‐normal geostatistical factor model," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
    15. Bernardi, Mauro, 2013. "Risk measures for skew normal mixtures," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1819-1824.
    16. repec:wrk:wrkemf:27 is not listed on IDEAS
    17. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    18. Lachos, Victor H. & Prates, Marcos O. & Dey, Dipak K., 2021. "Heckman selection-t model: Parameter estimation via the EM-algorithm," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    19. Fang, B.Q., 2006. "Sample mean, covariance and T2 statistic of the skew elliptical model," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1675-1690, August.
    20. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    21. Jamalizadeh, A. & Balakrishnan, N., 2010. "Distributions of order statistics and linear combinations of order statistics from an elliptical distribution as mixtures of unified skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1412-1427, July.
    22. Ye, Rendao & Wang, Tonghui & Gupta, Arjun K., 2014. "Distribution of matrix quadratic forms under skew-normal settings," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 229-239.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:3:p:1379-1393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.