IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i11p1231-d564018.html
   My bibliography  Save this article

New Regression Models Based on the Unit-Sinh-Normal Distribution: Properties, Inference, and Applications

Author

Listed:
  • Guillermo Martínez-Flórez

    (Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 230027, Colombia
    These authors contributed equally to this work.)

  • Roger Tovar-Falón

    (Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 230027, Colombia
    These authors contributed equally to this work.)

Abstract

In this paper, two new distributions were introduced to model unimodal and/or bimodal data. The first distribution, which was obtained by applying a simple transformation to a unit-Birnbaum–Saunders random variable, is useful for modeling data with positive support, while the second is appropriate for fitting data on the (0,1) interval. Extensions to regression models were also studied in this work, and statistical inference was performed from a classical perspective by using the maximum likelihood method. A small simulation study is presented to evaluate the benefits of the maximum likelihood estimates of the parameters. Finally, two applications to real data sets are reported to illustrate the developed methodology.

Suggested Citation

  • Guillermo Martínez-Flórez & Roger Tovar-Falón, 2021. "New Regression Models Based on the Unit-Sinh-Normal Distribution: Properties, Inference, and Applications," Mathematics, MDPI, vol. 9(11), pages 1-19, May.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:11:p:1231-:d:564018
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/11/1231/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/11/1231/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. N. Balakrishnan & Xiaojun Zhu, 2015. "Inference for the bivariate Birnbaum–Saunders lifetime regression model and associated inference," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 853-872, October.
    2. Ospina, Raydonal & Cribari-Neto, Francisco & Vasconcellos, Klaus L.P., 2006. "Improved point and interval estimation for a beta regression model," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 960-981, November.
    3. Simas, Alexandre B. & Barreto-Souza, Wagner & Rocha, Andréa V., 2010. "Improved estimators for a general class of beta regression models," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 348-366, February.
    4. Nabor Castillo & Héctor Gómez & Heleno Bolfarine, 2011. "Epsilon Birnbaum–Saunders distribution family: properties and inference," Statistical Papers, Springer, vol. 52(4), pages 871-883, November.
    5. Andréa Rocha & Alexandre Simas, 2011. "Influence diagnostics in a general class of beta regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 95-119, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo Mitnik & Sunyoung Baek, 2013. "The Kumaraswamy distribution: median-dispersion re-parameterizations for regression modeling and simulation-based estimation," Statistical Papers, Springer, vol. 54(1), pages 177-192, February.
    2. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
    3. Cristine Rauber & Francisco Cribari-Neto & Fábio M. Bayer, 2020. "Improved testing inferences for beta regressions with parametric mean link function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 687-717, December.
    4. Diego Ramos Canterle & Fábio Mariano Bayer, 2019. "Variable dispersion beta regressions with parametric link functions," Statistical Papers, Springer, vol. 60(5), pages 1541-1567, October.
    5. Barreto-Souza, Wagner & Vasconcellos, Klaus L.P., 2011. "Bias and skewness in a general extreme-value regression model," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1379-1393, March.
    6. Yiyun Shou & Michael Smithson, 2015. "Evaluating Predictors of Dispersion: A Comparison of Dominance Analysis and Bayesian Model Averaging," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 236-256, March.
    7. Patrícia L. Espinheira & Alisson Oliveira Silva, 2020. "Residual and influence analysis to a general class of simplex regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 523-552, June.
    8. Oscar Melo & Carlos Melo & Jorge Mateu, 2015. "Distance-based beta regression for prediction of mutual funds," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 83-106, January.
    9. repec:jss:jstsof:34:i02 is not listed on IDEAS
    10. Wagner Hugo Bonat & Paulo Justiniano Ribeiro & Walmes Marques Zeviani, 2015. "Likelihood analysis for a class of beta mixed models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(2), pages 252-266, February.
    11. Edilberto Cepeda-Cuervo & Vicente Núñez-Antón, 2013. "Spatial Double Generalized Beta Regression Models," Journal of Educational and Behavioral Statistics, , vol. 38(6), pages 604-628, December.
    12. Weihua Zhao & Riquan Zhang & Yazhao Lv & Jicai Liu, 2014. "Variable selection for varying dispersion beta regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 95-108, January.
    13. Alejandra Tapia & Victor Leiva & Maria del Pilar Diaz & Viviana Giampaoli, 2019. "Influence diagnostics in mixed effects logistic regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 920-942, September.
    14. Guillermo Martínez-Flórez & Artur J. Lemonte & Germán Moreno-Arenas & Roger Tovar-Falón, 2022. "The Bivariate Unit-Sinh-Normal Distribution and Its Related Regression Model," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    15. Lucio Masserini & Matilde Bini & Monica Pratesi, 2017. "Effectiveness of non-selective evaluation test scores for predicting first-year performance in university career: a zero-inflated beta regression approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 693-708, March.
    16. Ali Genç, 2013. "A skew extension of the slash distribution via beta-normal distribution," Statistical Papers, Springer, vol. 54(2), pages 427-442, May.
    17. Li-Chu Chien, 2013. "Multiple deletion diagnostics in beta regression models," Computational Statistics, Springer, vol. 28(4), pages 1639-1661, August.
    18. Jay Verkuilen & Michael Smithson, 2012. "Mixed and Mixture Regression Models for Continuous Bounded Responses Using the Beta Distribution," Journal of Educational and Behavioral Statistics, , vol. 37(1), pages 82-113, February.
    19. Andréa Rocha & Alexandre Simas, 2011. "Influence diagnostics in a general class of beta regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 95-119, May.
    20. Lemonte, Artur J. & Cordeiro, Gauss M., 2009. "Birnbaum-Saunders nonlinear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4441-4452, October.
    21. Guillermo Martínez-Flórez & Inmaculada Barranco-Chamorro & Héctor W. Gómez, 2021. "Flexible Log-Linear Birnbaum–Saunders Model," Mathematics, MDPI, vol. 9(11), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:11:p:1231-:d:564018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.