IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i7p1719-1731.html
   My bibliography  Save this article

A path sampling identity for computing the Kullback-Leibler and J divergences

Author

Listed:
  • Lefebvre, Geneviève
  • Steele, Russell
  • Vandal, Alain C.

Abstract

Estimating normalizing constants is a common and often difficult problem in statistics, and path sampling (PS) is among the most powerful methods that have been put forward to this end. Using an identity that arises in the formulation of PS, we derive expressions for the Kullback-Leibler (KL) and J divergences between two distributions from possibly different parametric families. These expressions naturally stem from PS when the geometric path is used to link the two extreme densities. We examine the use of the KL and J divergence measures in PS in a variety of model selection examples. In this context, one challenging aspect of PS is that of selecting an appropriate auxiliary density that will yield a high quality estimate of the marginal likelihood without incurring excessive computational effort. The J divergence is shown to be helpful for choosing auxiliary densities that minimize the error of the PS estimators. These results increase appreciably the usefulness of PS.

Suggested Citation

  • Lefebvre, Geneviève & Steele, Russell & Vandal, Alain C., 2010. "A path sampling identity for computing the Kullback-Leibler and J divergences," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1719-1731, July.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:7:p:1719-1731
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00033-2
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
    2. Han C. & Carlin B. P., 2001. "Markov Chain Monte Carlo Methods for Computing Bayes Factors: A Comparative Review," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1122-1132, September.
    3. Ajay Jasra & David A. Stephens & Christopher C. Holmes, 2007. "Population-Based Reversible Jump Markov Chain Monte Carlo," Biometrika, Biometrika Trust, vol. 94(4), pages 787-807.
    4. N. Friel & A. N. Pettitt, 2008. "Marginal likelihood estimation via power posteriors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 589-607, July.
    5. Damian Clancy & Philip D. O'Neill, 2007. "Exact Bayesian Inference and Model Selection for Stochastic Models of Epidemics Among a Community of Households," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(2), pages 259-274, June.
    6. Liang F. & Wong W.H., 2001. "Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 653-666, June.
    7. Song, Xin-Yuan & Lee, Sik-Yum, 2002. "A Bayesian model selection method with applications," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 539-557, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cadini, F. & Avram, D. & Pedroni, N. & Zio, E., 2012. "Subset Simulation of a reliability model for radioactive waste repository performance assessment," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 75-83.
    2. White, Staci A. & Herbei, Radu, 2015. "A Monte Carlo approach to quantifying model error in Bayesian parameter estimation," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 168-181.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rigat, F. & Mira, A., 2012. "Parallel hierarchical sampling: A general-purpose interacting Markov chains Monte Carlo algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1450-1467.
    2. Spezia, Luigi, 2020. "Bayesian variable selection in non-homogeneous hidden Markov models through an evolutionary Monte Carlo method," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
    3. Luigi Spezia & Andy Vinten & Roberta Paroli & Marc Stutter, 2021. "An evolutionary Monte Carlo method for the analysis of turbidity high‐frequency time series through Markov switching autoregressive models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
    4. Luca Martino & Fernando Llorente & Ernesto Curbelo & Javier López-Santiago & Joaquín Míguez, 2021. "Automatic Tempered Posterior Distributions for Bayesian Inversion Problems," Mathematics, MDPI, vol. 9(7), pages 1-17, April.
    5. repec:dau:papers:123456789/5724 is not listed on IDEAS
    6. Li, Yong & Wang, Nianling & Yu, Jun, 2023. "Improved marginal likelihood estimation via power posteriors and importance sampling," Journal of Econometrics, Elsevier, vol. 234(1), pages 28-52.
    7. Drovandi, Christopher C. & McGree, James M. & Pettitt, Anthony N., 2013. "Sequential Monte Carlo for Bayesian sequentially designed experiments for discrete data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 320-335.
    8. Lee, J. & Fan, Y. & Sisson, S.A., 2015. "Bayesian threshold selection for extremal models using measures of surprise," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 84-99.
    9. Joshua C. C. Chan & Eric Eisenstat, 2015. "Marginal Likelihood Estimation with the Cross-Entropy Method," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 256-285, March.
    10. Calderhead, Ben & Girolami, Mark, 2009. "Estimating Bayes factors via thermodynamic integration and population MCMC," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4028-4045, October.
    11. Li Ma, 2015. "Scalable Bayesian Model Averaging Through Local Information Propagation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 795-809, June.
    12. Jasra, Ajay & Doucet, Arnaud & Stephens, David A. & Holmes, Christopher C., 2008. "Interacting sequential Monte Carlo samplers for trans-dimensional simulation," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1765-1791, January.
    13. Perrakis, Konstantinos & Ntzoufras, Ioannis & Tsionas, Efthymios G., 2014. "On the use of marginal posteriors in marginal likelihood estimation via importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 54-69.
    14. Liu, Xiaobin & Li, Yong & Yu, Jun & Zeng, Tao, 2022. "Posterior-based Wald-type statistics for hypothesis testing," Journal of Econometrics, Elsevier, vol. 230(1), pages 83-113.
    15. Mathias Drton & Martyn Plummer, 2017. "A Bayesian information criterion for singular models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 323-380, March.
    16. Fuyu Yang, 2007. "Bayesian Analysis of Deterministic Time Trend and Changes in Persistence Using a Generalised Stochastic Unit Root Model," Discussion Papers in Economics 07/11, Division of Economics, School of Business, University of Leicester.
    17. Xing Ju Lee & Christopher C. Drovandi & Anthony N. Pettitt, 2015. "Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets," Biometrics, The International Biometric Society, vol. 71(1), pages 198-207, March.
    18. S. G. J. Senarathne & C. C. Drovandi & J. M. McGree, 2020. "Bayesian sequential design for Copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 454-478, June.
    19. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    20. Jeong Eun Lee & Christian Robert, 2013. "Imortance Sampling Schemes for Evidence Approximation in Mixture Models," Working Papers 2013-42, Center for Research in Economics and Statistics.
    21. James Martin & Ajay Jasra & Emma McCoy, 2013. "Inference for a class of partially observed point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 413-437, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:7:p:1719-1731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.