IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v4y2008i1n20.html
   My bibliography  Save this article

A Marginal Mixture Model for Selecting Differentially Expressed Genes across Two Types of Tissue Samples

Author

Listed:
  • Qiu Weiliang

    (Brigham and Women’s Hospital and Harvard Medical School)

  • He Wenqing

    (University of Western Ontario)

  • Wang Xiaogang

    (York University)

  • Lazarus Ross

    (Brigham and Women’s Hospital and Harvard Medical School)

Abstract

Bayesian hierarchical models that characterize the distributions of (transformed) gene profiles have been proven very useful and flexible in selecting differentially expressed genes across different types of tissue samples (e.g. Lo and Gottardo, 2007). However, the marginal mean and variance of these models are assumed to be the same for different gene clusters and for different tissue types. Moreover, it is not easy to determine which of the many competing Bayesian hierarchical models provides the best fit for a specific microarray data set. To address these two issues, we propose a marginal mixture model that directly models the marginal distribution of transformed gene profiles. Specifically, we approximate the marginal distributions of transformed gene profiles via a mixture of three-component multivariate Normal distributions, each component of which has the same structures of marginal mean vector and covariance matrix as those for Bayesian hierarchical models, but the values can differ. Based on the proposed model, a method is derived to select genes differentially expressed across two types of tissue samples. The derived gene selection method performs well on a real microarray data set and consistently has the best performance (based on class agreement indices) compared with several other gene selection methods on simulated microarray data sets generated from three different mixture models.

Suggested Citation

  • Qiu Weiliang & He Wenqing & Wang Xiaogang & Lazarus Ross, 2008. "A Marginal Mixture Model for Selecting Differentially Expressed Genes across Two Types of Tissue Samples," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-30, October.
  • Handle: RePEc:bpj:ijbist:v:4:y:2008:i:1:n:20
    DOI: 10.2202/1557-4679.1093
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1557-4679.1093
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1557-4679.1093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiaogang & Qiu, Weiliang & Zamar, Ruben H., 2007. "CLUES: A non-parametric clustering method based on local shrinking," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 286-298, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Fang & Qiu, Weiliang & Zamar, Ruben H. & Lazarus, Ross & Wang, Xiaogang, 2010. "clues: An R Package for Nonparametric Clustering Based on Local Shrinking," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i04).
    2. Jing Qi & Yang Zhou & Zicen Zhao & Shuilin Jin, 2021. "SDImpute: A statistical block imputation method based on cell-level and gene-level information for dropouts in single-cell RNA-seq data," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-20, June.
    3. Bécue-Bertaut, Monica & Pagès, Jérome, 2008. "Multiple factor analysis and clustering of a mixture of quantitative, categorical and frequency data," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3255-3268, February.
    4. Fraiman, Ricardo & Justel, Ana & Svarc, Marcela, 2010. "Pattern recognition via projection-based kNN rules," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1390-1403, May.
    5. repec:jss:jstsof:33:i04 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:4:y:2008:i:1:n:20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.