Impact of non-normal random effects on inference by multiple imputation: A simulation assessment
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hakan Demirtas, 2004. "Simulation driven inferences for multiply imputed longitudinal datasets," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(4), pages 466-482, November.
- Andrew Gelman & Iven Van Mechelen & Geert Verbeke & Daniel F. Heitjan & Michel Meulders, 2005. "Multiple Imputation for Model Checking: Completed-Data Plots with Missing and Latent Data," Biometrics, The International Biometric Society, vol. 61(1), pages 74-85, March.
- Yucel, Recai M. & He, Yulei & Zaslavsky, Alan M., 2008. "Using Calibration to Improve Rounding in Imputation," The American Statistician, American Statistical Association, vol. 62, pages 125-129, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hron, K. & Templ, M. & Filzmoser, P., 2010. "Imputation of missing values for compositional data using classical and robust methods," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3095-3107, December.
- Ângela Jornada Ben & Johanna M. Dongen & Mohamed El Alili & Martijn W. Heymans & Jos W. R. Twisk & Janet L. MacNeil-Vroomen & Maartje Wit & Susan E. M. Dijk & Teddy Oosterhuis & Judith E. Bosmans, 2023. "The handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses?," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 24(6), pages 951-965, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhongqi Liang & Qihua Wang & Yuting Wei, 2022. "Robust model selection with covariables missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 539-557, June.
- Jung, Hyekyung & Schafer, Joseph L. & Seo, Byungtae, 2011. "A latent class selection model for nonignorably missing data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 802-812, January.
- Meulders, Michel, 2013. "An R Package for Probabilistic Latent Feature Analysis of Two-Way Two-Mode Frequencies," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 54(i14).
- A. Mattei & F. Mealli, 2007. "Application of the Principal Stratification Approach to the Faenza Randomized Experiment on Breast Self-Examination," Biometrics, The International Biometric Society, vol. 63(2), pages 437-446, June.
- Yajuan Si & Jerome P. Reiter, 2013. "Nonparametric Bayesian Multiple Imputation for Incomplete Categorical Variables in Large-Scale Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 38(5), pages 499-521, October.
- Hakan Demirtas & Donald Hedeker, 2011. "Generating multivariate continuous data via the notion of nearest neighbors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(1), pages 47-55.
- Mr. Michael Weber & Ms. Michaela Denk, 2011. "Avoid Filling Swiss Cheese with Whipped Cream: Imputation Techniques and Evaluation Procedures for Cross-Country Time Series," IMF Working Papers 2011/151, International Monetary Fund.
- Lei Jin & Suojin Wang, 2010. "A Model Validation Procedure when Covariate Data are Missing at Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 403-421, September.
- Leon, Andrew C. & Hedeker, Donald, 2007. "Quintile stratification based on a misspecified propensity score in longitudinal treatment effectiveness analyses of ordinal doses," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6114-6122, August.
- Sarah Mustillo, 2012. "The Effects of Auxiliary Variables on Coefficient Bias and Efficiency in Multiple Imputation," Sociological Methods & Research, , vol. 41(2), pages 335-361, May.
- Gunnhildur Högnadóttir Steinbakk & Geir Olve Storvik, 2009. "Posterior Predictive p‐values in Bayesian Hierarchical Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 320-336, June.
- Hakan Demirtas & Robab Ahmadian & Sema Atis & Fatma Ezgi Can & Ilker Ercan, 2016. "A nonnormal look at polychoric correlations: modeling the change in correlations before and after discretization," Computational Statistics, Springer, vol. 31(4), pages 1385-1401, December.
- Demirtas, Hakan, 2008. "On imputing continuous data when the eventual interest pertains to ordinalized outcomes via threshold concept," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2261-2271, January.
- Leonidas A. Zampetakis & Vassilis S. Moustakis, 2010. "An exploratory research on the factors stimulating corporate entrepreneurship in the Greek public sector," International Journal of Manpower, Emerald Group Publishing Limited, vol. 31(8), pages 871-887, November.
- Michael J. Daniels & Arkendu S. Chatterjee & Chenguang Wang, 2012. "Bayesian Model Selection for Incomplete Data Using the Posterior Predictive Distribution," Biometrics, The International Biometric Society, vol. 68(4), pages 1055-1063, December.
- Lee, Min Cherng & Mitra, Robin, 2016. "Multiply imputing missing values in data sets with mixed measurement scales using a sequence of generalised linear models," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 24-38.
- Jörg Drechsler, 2015. "Multiple Imputation of Multilevel Missing Data—Rigor Versus Simplicity," Journal of Educational and Behavioral Statistics, , vol. 40(1), pages 69-95, February.
- Sun, Zhihua & Wang, Qihua & Dai, Pengjie, 2009. "Model checking for partially linear models with missing responses at random," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 636-651, April.
- G. Inan & R. Yucel, 2017. "Joint GEEs for multivariate correlated data with incomplete binary outcomes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(11), pages 1920-1937, August.
- Yan Xia & Yanyun Yang, 2016. "Bias Introduced by Rounding in Multiple Imputation for Ordered Categorical Variables," The American Statistician, Taylor & Francis Journals, vol. 70(4), pages 358-364, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:3:p:790-801. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.