IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v68y2006i3p457-476.html
   My bibliography  Save this article

A new approach to cluster analysis: the clustering‐function‐based method

Author

Listed:
  • Baibing Li

Abstract

Summary. The purpose of the paper is to present a new statistical approach to hierarchical cluster analysis with n objects measured on p variables. Motivated by the model of multivariate analysis of variance and the method of maximum likelihood, a clustering problem is formulated as a least squares optimization problem, simultaneously solving for both an n‐vector of unknown group membership of objects and a linear clustering function. This formulation is shown to be linked to linear regression analysis and Fisher linear discriminant analysis and includes principal component regression for tackling multicollinearity or rank deficiency, polynomial or B‐splines regression for handling non‐linearity and various variable selection methods to eliminate irrelevant variables from data analysis. Algorithmic issues are investigated by using sign eigenanalysis.

Suggested Citation

  • Baibing Li, 2006. "A new approach to cluster analysis: the clustering‐function‐based method," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 457-476, June.
  • Handle: RePEc:bla:jorssb:v:68:y:2006:i:3:p:457-476
    DOI: 10.1111/j.1467-9868.2006.00549.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2006.00549.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2006.00549.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alan Jessop, 2010. "An optimising approach to alternative clustering schemes," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(3), pages 293-309, September.
    2. Timothy I. Cannings & Richard J. Samworth, 2017. "Random-projection ensemble classification," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 959-1035, September.
    3. De la Cruz-Mesia, Rolando & Quintana, Fernando A. & Marshall, Guillermo, 2008. "Model-based clustering for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1441-1457, January.
    4. Gallegos, María Teresa & Ritter, Gunter, 2010. "Using combinatorial optimization in model-based trimmed clustering with cardinality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 637-654, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:68:y:2006:i:3:p:457-476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.