IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i12p3300-3312.html
   My bibliography  Save this article

Robust model selection with flexible trimming

Author

Listed:
  • Riani, Marco
  • Atkinson, Anthony C.

Abstract

The forward search provides data-driven flexible trimming of a Cp statistic for the choice of regression models that reveals the effect of outliers on model selection. An informed robust model choice follows. Even in small samples, the statistic has a null distribution indistinguishable from an F distribution. Limits on acceptable values of the Cp statistic follow. Two examples of widely differing size are discussed. A powerful graphical tool is the generalized candlestick plot, which summarizes the information on all forward searches and on the choice of models. A comparison is made with the use of M-estimation in robust model choice.

Suggested Citation

  • Riani, Marco & Atkinson, Anthony C., 2010. "Robust model selection with flexible trimming," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3300-3312, December.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:12:p:3300-3312
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00109-X
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anthony C. Atkinson, 2002. "Forward search added-variable t-tests and the effect of masked outliers on model selection," Biometrika, Biometrika Trust, vol. 89(4), pages 939-946, December.
    2. Agostinelli, Claudio, 2002. "Robust model selection in regression via weighted likelihood methodology," Statistics & Probability Letters, Elsevier, vol. 56(3), pages 289-300, February.
    3. Matías Salibián-Barrera & Stefan Aelst & Gert Willems, 2008. "Fast and robust bootstrap," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(1), pages 41-71, February.
    4. Marco Riani & Anthony C. Atkinson & Andrea Cerioli, 2009. "Finding an unknown number of multivariate outliers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 447-466, April.
    5. Muller, Samuel & Welsh, A.H., 2005. "Outlier Robust Model Selection in Linear Regression," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1297-1310, December.
    6. Khan, Jafar A. & Van Aelst, Stefan & Zamar, Ruben H., 2007. "Building a robust linear model with forward selection and stepwise procedures," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 239-248, September.
    7. McCann, Lauren & Welsch, Roy E., 2007. "Robust variable selection using least angle regression and elemental set sampling," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 249-257, September.
    8. Cantoni E. & Ronchetti E., 2001. "Robust Inference for Generalized Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1022-1030, September.
    9. Lutz, Roman Werner & Kalisch, Markus & Buhlmann, Peter, 2008. "Robustified L2 boosting," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3331-3341, March.
    10. Suzanne Sommer & Richard M. Huggins, 1996. "Variables Selection Using the Wald Test and a Robust CP," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(1), pages 15-29, March.
    11. Khan, Jafar A. & Van Aelst, Stefan & Zamar, Ruben H., 2007. "Robust Linear Model Selection Based on Least Angle Regression," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1289-1299, December.
    12. Salibian-Barrera, Matias & Van Aelst, Stefan, 2008. "Robust model selection using fast and robust bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5121-5135, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Søren Johansen & Marco Riani & Anthony C. Atkinson, 2012. "The Selection of ARIMA Models with or without Regressors," Discussion Papers 12-17, University of Copenhagen. Department of Economics.
    2. Francesca Torti & Aldo Corbellini & Anthony C. Atkinson, 2021. "fsdaSAS: A Package for Robust Regression for Very Large Datasets Including the Batch Forward Search," Stats, MDPI, vol. 4(2), pages 1-21, April.
    3. Torti, Francesca & Corbellini, Aldo & Atkinson, Anthony C., 2021. "fsdaSAS: a package for robust regression for very large datasets including the batch forward search," LSE Research Online Documents on Economics 109895, London School of Economics and Political Science, LSE Library.
    4. Andrea Cerioli & Marco Riani & Anthony C. Atkinson & Aldo Corbellini, 2018. "Rejoinder to the discussion of “The power of monitoring: how to make the most of a contaminated multivariate sample”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 661-666, December.
    5. Andreas Alfons & Wolfgang Baaske & Peter Filzmoser & Wolfgang Mader & Roland Wieser, 2011. "Robust variable selection with application to quality of life research," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(1), pages 65-82, March.
    6. Anwar, Sajid & Sun, Sizhong, 2012. "Trade liberalisation, market competition and wage inequality in China's manufacturing sector," Economic Modelling, Elsevier, vol. 29(4), pages 1268-1277.
    7. Christian Hennig & Willi Sauerbrei, 2019. "Exploration of the variability of variable selection based on distances between bootstrap sample results," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 933-963, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Jafar A. & Van Aelst, Stefan & Zamar, Ruben H., 2010. "Fast robust estimation of prediction error based on resampling," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3121-3130, December.
    2. Andreas Alfons & Wolfgang Baaske & Peter Filzmoser & Wolfgang Mader & Roland Wieser, 2011. "Robust variable selection with application to quality of life research," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(1), pages 65-82, March.
    3. Salibian-Barrera, Matias & Van Aelst, Stefan, 2008. "Robust model selection using fast and robust bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5121-5135, August.
    4. Menjoge, Rajiv S. & Welsch, Roy E., 2010. "A diagnostic method for simultaneous feature selection and outlier identification in linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3181-3193, December.
    5. Alfons, Andreas & Croux, Christophe & Gelper, Sarah, 2016. "Robust groupwise least angle regression," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 421-435.
    6. Gottard, Anna & Pacillo, Simona, 2010. "Robust concentration graph model selection," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3070-3079, December.
    7. Thompson, Ryan, 2022. "Robust subset selection," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    8. Sanjoy K. Sinha, 2019. "Robust small area estimation in generalized linear mixed models," METRON, Springer;Sapienza Università di Roma, vol. 77(3), pages 201-225, December.
    9. La Vecchia, Davide & Camponovo, Lorenzo & Ferrari, Davide, 2015. "Robust heart rate variability analysis by generalized entropy minimization," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 137-151.
    10. Valéry Dongmo Jiongo & Pierre Nguimkeu, 2018. "Bootstrapping Mean Squared Errors of Robust Small-Area Estimators: Application to the Method-of-Payments Data," Staff Working Papers 18-28, Bank of Canada.
    11. Jiao, Xiyu & Pretis, Felix & Schwarz, Moritz, 2024. "Testing for coefficient distortion due to outliers with an application to the economic impacts of climate change," Journal of Econometrics, Elsevier, vol. 239(1).
    12. Anthony C. Atkinson & Marco Riani & Aldo Corbellini, 2020. "The analysis of transformations for profit‐and‐loss data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(2), pages 251-275, April.
    13. Domenico Perrotta & Marco Riani & Francesca Torti, 2009. "New robust dynamic plots for regression mixture detection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(3), pages 263-279, December.
    14. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    15. Angela Calvo & Christian Preti & Maria Caria & Roberto Deboli, 2019. "Vibration and Noise Transmitted by Agricultural Backpack Powered Machines Critically Examined Using the Current Standards," IJERPH, MDPI, vol. 16(12), pages 1-20, June.
    16. Zhang, Yuexia & Qin, Guoyou & Zhu, Zhongyi & Xu, Wanghong, 2019. "A novel robust approach for analysis of longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 83-95.
    17. Samanta, Mayukh & Welsh, A.H., 2013. "Bootstrapping for highly unbalanced clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 70-81.
    18. Cerioli, Andrea & Farcomeni, Alessio & Riani, Marco, 2014. "Strong consistency and robustness of the Forward Search estimator of multivariate location and scatter," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 167-183.
    19. Salibian-Barrera, Matias & Van Aelst, Stefan & Yohai, Víctor J., 2016. "Robust tests for linear regression models based on τ-estimates," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 436-455.
    20. O’Shaughnessy, P.Y. & Welsh, A.H., 2018. "Bootstrapping longitudinal data with multiple levels of variation," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 117-131.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:12:p:3300-3312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.